Probability theory I - exercise set IV

Exercise 1. Let A, B be two events. Prove that the following are equivalent:

- A, B are independent;
- A^{c}, B are independent;
- $\mathbb{I}_{A}, \mathbb{I}_{B}$ are independent random variables.

Exercise 2. Let $X_{1}, \ldots X_{n-1}$ be independent $\frac{1}{2}$-Bernoulli random variables, that is, $\mathbb{P}\left(X_{i}=1\right)=\mathbb{P}\left(X_{i}=0\right)=\frac{1}{2}$, and let

$$
X_{n}=\sum_{i=1}^{n-1} X_{i} \quad \bmod 2= \begin{cases}1, & \sum_{i=1}^{n-1} X_{i} \text { is odd } \\ 0, & \text { otherwise }\end{cases}
$$

Prove that X_{1}, \ldots, X_{n} are not independent, but every $(n-1)$-element subcollection $X_{1}, \ldots, X_{k-1}, X_{k+1}, \ldots, X_{n}$ of them is independent.

Exercise 3. Let X, Y be two independent random variables with probability distribution functions F_{X}, F_{Y}. Find the probability distribution functions of the random variables $\max (X, Y)$ and $\min (X, Y)$.

Exercise 4. Let X_{1}, X_{2} be the outcomes of rolling two dice. Find all $a \in\{2, \ldots, 12\}$ such that the random variable $\mathbb{I}_{X_{1}+X_{2}=a}$ is independent of X_{1}.

Exercise 5. Let X and Y be two independent exponential random variables with parameter 1 , that is, with density

$$
f(x)= \begin{cases}e^{-x}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

Find the distribution of the random variable $X /(X+Y)$.
Exercise 6. Let X, Y be two independent exponential random variables with parameter 1. Prove that $\min (X, Y)$ is independent of $\max (X, Y)-\min (X, Y)$.
Exercise 7. Let X be a random variable with values in \mathbb{N} such that

$$
\mathbb{P}(X=n)=\frac{n^{-s}}{\zeta(s)},
$$

where $s>1$ and $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}$. Given a prime number p, let E_{p} be the event that X is divisible by p. Prove that the events E_{p} are independent.
Exercise 8. (Maxwell's theorem) Let X_{1}, X_{2} be two independent scalar random variables such that the distribution of the random vector ($X_{1} ; X_{2}$) is invariant under rotations of the plane around the origin. Prove that X_{1} and X_{2} have normal distribution (that is, have a density of the form $C e^{-a x^{2}}$, where $C>0$ and $a>0$). You may assume, if necessary, that $\left(X_{1}, X_{2}\right)$ has a continuous, or even smooth, density with respect to the 2-dimensional Lebesgue measure.

