Exercise 1. Let X be a geometric random variable, that is,

$$
\mathbb{P}(X=n)=(1-a) a^{n}, \quad n=0,1, \ldots
$$

for some $a \in(0,1)$, and $\mathbb{P}(X \notin \mathbb{N} \cup\{0\})=0$. Compute $\mathbb{E} X, \mathbb{E} X^{2}$ and $\mathbb{E} X^{3}$.
Exercise 2. Let X be an exponential random variable, that is, the density of X is given by

$$
F_{X}^{\prime}(x)= \begin{cases}\exp (-x) & , \quad x \geq 0 \\ 0 & x<0\end{cases}
$$

Compute $\mathbb{E} X^{n}$ for every $n \in \mathbb{N}$.
Exercise 3. Consider a random variable X such that

$$
F_{X}(x)= \begin{cases}0, & x<-10 \\ \frac{1}{2}, & -10 \leq x<0 \\ 1-\frac{1}{2} e^{-x}, & x \geq 0\end{cases}
$$

Compute $\mathbb{E} X$.
Exercise 4. Given $\alpha>1$, let X be a random variable with probability density function $F_{X}^{\prime}(x)=\frac{1}{2(\alpha-1)}|x|^{-\alpha}$. Compute $\mathbb{E} X$.

Exercise 5. Let X be a random variable such that its distribution μ_{X} is the uniform measure on the Cantor set, as constructed in Exercise 7 of Set II. Compute $\mathbb{E} X$ and $\mathbb{E} X^{2}$.

Exercise 6. Let $(\Omega, \mathcal{F}, \mu)$ be a σ-finite measure space, and let $f: \Omega \rightarrow \mathbb{R}_{\geq 0}$ be a measurable function. Its subgraph S_{f} is defined by

$$
S_{f}:=\left\{\left(\omega, \omega^{\prime}\right) \in \Omega \times \mathbb{R}_{\geq 0}: \omega^{\prime}<f(\omega)\right\}
$$

Prove that S_{f} is an $\mathcal{F} \otimes \mathcal{B}\left(\mathbb{R}_{\geq 0}\right)$ measurable set, and that

$$
(\mu \otimes \lambda)\left(S_{f}\right)=\int_{\Omega} f d \mu
$$

where λ is the Lebesgue measure.
Exercise 7. Prove that, for a non-negative random variable X, one has

$$
\mathbb{E} X=\int_{0}^{\infty}\left(1-F_{X}(t)\right) d t
$$

Exercise 8. Given $\alpha>0$, denote

$$
f_{\alpha}(x, y):=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2 \alpha}}
$$

Prove that for any $0<\alpha<1$, one has

$$
\int_{(0,1)}\left(\int_{(0,1)} f_{\alpha}(x, y) d x\right) d y=\int_{(0,1)}\left(\int_{(0,1)} f_{\alpha}(x, y) d y\right) d x
$$

Check that, however,

$$
\int_{(0,1)}\left(\int_{(0,1)} f_{1}(x, y) d x\right) d y \neq \int_{(0,1)}\left(\int_{(0,1)} f_{1}(x, y) d y\right) d x
$$

Hint: For the second part, you might use the identity

$$
\frac{\partial}{\partial y} \frac{y}{x^{2}+y^{2}}=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

