Exercise 1. Let X_{n} be a simple random walk on \mathbb{Z}, and define

$$
\tau:=\min \left\{n: X_{n}=-1\right\} .
$$

(1) Prove that $e^{\theta X_{n}}(\cosh \theta)^{-n}$ is a martingale.
(2) Deduce that, for every $0 \leq \alpha<1$, we have $\mathbb{E} \alpha^{\tau}=\frac{1-\sqrt{1-\alpha^{2}}}{\alpha}$, that is,

$$
\mathbb{P}(\tau=2 k-1)=(-1)^{k+1} \cdot \frac{\frac{1}{2}\left(\frac{1}{2}-1\right) \ldots\left(\frac{1}{2}-k+1\right)}{k!}
$$

Exercise 2. Let X_{n} be a simple random walk on \mathbb{Z}, and $a, b \in \mathbb{N}$, and denote $\tau:=\min \left\{n: X_{n}=-a\right.$ or $\left.X_{n}=b\right\}, Y_{n}:=X_{n \wedge \tau}$. Prove that, conditionally on the event $A=\left\{X_{\tau}=a\right\}, Y_{n}$ is a Markov chain, that is,

$$
\mathbb{P}\left(Y_{n}=x_{n} \mid Y_{n-1}=x_{n-1}, \ldots, Y_{1}=x_{1}, A\right)=\mathbb{P}\left(Y_{n}=x_{n} \mid Y_{n-1}=x_{n-1}, A\right)
$$

Compute the transition probabilities of that chain.
Exercise 3. Let X_{1}, X_{2}, \ldots be a sequence of i. i. d., random variables, such that each X_{i} is uniformly chosen from the 26 letters of the English alphabet. Define τ to be the minimal n such that

$$
\left(X_{n}, \ldots, X_{n+10}\right)=(A, B, R, A, C, A, D, A, B, R, A)
$$

(1) At each time n, a new gambler arrives and bets 1 EUR on the event that $X_{n}=A$. If he loses, he leaves; if he wins, he receives 26 EUR, all of which he bets on the event that $X_{n+1}=B$. If he loses, he leaves; if he wins, he receives 26^{2} EUR, all of which he bets on $X_{n+2}=R$, and so on. Prove that if Y_{m} is the total gain of all the gamblers by time m, then Y_{m} is a martingale.
(2) Prove that

$$
Y_{\tau+10}=26^{11}+26^{4}+26-\tau-10
$$

Deduce that

$$
\mathbb{E}(\tau)=26^{11}+26^{4}+26-10
$$

Exercise 4. Alice and Bob are playing the following game: Bob names a string of three letters (e. g., $A A B$), after which Alice names another string of three letters (e. g. $B A B$). Then, they sample independent random variables X_{1}, X_{2}, \ldots with $\mathbb{P}\left(X_{i}=A\right)=\mathbb{P}\left(X_{i}=B\right)=\frac{1}{2}$; Alice wins if her string occurs in the sequence X_{1}, X_{2}, \ldots before Bob's. We say that Alice's string beats Bob's if the probability of Alice to win is greater than $\frac{1}{2}$.
(1) Assume that the strings chosen by Alice and Bob are given. Explain how to compute $\mathbb{P}($ Alice wins $)$ in terms of $\mathbb{P}\left(\tau_{x}<\tau_{y}\right)$, where $\tau_{a}:=\min \left\{n: Y_{n}=a\right\}$ and Y_{0}, Y_{1}, \ldots is a certain Markov chain with six states.
(2) Prove that $A A B$ beats $A B B$.
(3) Prove that whatever Bob does, Alice can guarantee a win with probability strictly greater than $\frac{1}{2}$.

Let $\mathcal{D}_{k}:=\left\{\left[l 2^{-k},(l+1) 2^{-k}\right), l=0, \ldots, 2^{k}-1\right\}$ denote the set of diadic intervals of rank k in $[0 ; 1)$. For $x \in[0 ; 1)$, let $I_{k}(x)$ denote $I \in \mathcal{D}_{k}$ such that $x \in I$. Given an integrable function $f:[0 ; 1) \mapsto \mathbb{R}$, denote by $M_{k} f$ its diadic averages:

$$
\left(M_{k}(f)\right)(x)=\left|I_{k}(x)\right|^{-1} \int_{I_{k}(x)} f(y) d y
$$

Exercise 5. Check that if an integrable function f is viewed as a random variable on the probability space $[0 ; 1)$, equipped with the Borel σ-algebra and the Lebesgue measure, then

$$
M_{k}(f)=\mathbb{E}\left(f \mid \sigma\left(\mathcal{D}_{k}\right)\right)
$$

Before doing the next exercises, consult Definition 4.8.9 and the statement of Theorem 4.8.10 in the lecture notes (to be covered in the next lecture).

Exercise 6. Define the diadic Hardy-Littlewood maximal operator $A f:=\sup _{k} M_{k}(|f|)$. Prove that there exists a constant $C>0$ such that

$$
\int_{0}^{1}(A f)^{p} \leq C \int_{0}^{1}|f|^{p}
$$

Exercise 7. Prove the weak-type Hardy-Littlewood bound

$$
a \lambda\left(\{\omega \in[0 ; 1]:(A f)(\omega)>a) \leq C \int_{0}^{1}|f|,\right.
$$

where $f:[0 ; 1] \mapsto \mathbb{R}$ is an integrable function.
Exercise 8. Prove the diadic Lebesgue differentiation theorem: if $f:[0 ; 1) \rightarrow \mathbb{R}$ is integrable, then

$$
\lim _{k \rightarrow \infty}\left(M_{k} f\right)(x) \rightarrow f(x)
$$

for almost every x.

