Exercise 1. Prove the conditional Chebyshev inequality: if X is a random variable such that $X \geq 0$ almost surely and $\mathbb{E} X<\infty$, then

$$
\mathbb{P}(X>a \mid \mathcal{G}) \leq \frac{\mathbb{E}(X \mid \mathcal{G})}{a} \text { almost surely. }
$$

Exercise 2. Let (X, Y) be a centered Gaussian vector with $\mathbb{E} Y^{2}=1$. Prove that almost surely, the conditional distribution of X given Y is Gaussian with mean $Y \mathbb{E}(X Y)$ and variance $\mathbb{E} X^{2}-(\mathbb{E}(X Y))^{2}$.
Exercise 3. Let ξ_{1}, ξ_{2}, \ldots be independent centered random variables with finite variance, and define $S_{n}=\xi_{1}+\cdots+\xi_{n}$. Prove that

$$
S_{n}^{2}-\operatorname{Var} S_{n}
$$

is a martingale.
Exercise 4. Let X_{n} be a submartingale, and let τ be a stopping time such that $\tau \leq n$ almost surely. Prove that

$$
\mathbb{E} X_{\tau} \leq \mathbb{E} X_{n}
$$

Exercise 5. Let X_{n} and Y_{n} be submartingales (adapted to the same filtration). Prove that $\max \left(X_{n} ; Y_{n}\right)$ is a submartingale.
Exercise 6. Let M be a separable metric space such that $d(x, y)<1$ for all $x, y \in \Omega^{\prime}$. Let $\left\{q_{1}, q_{2}, \ldots\right\} \subset M$ be a countable dense subset, and define a function $\varphi: M \mapsto[0 ; 1)^{\mathbb{N}}=\left\{\left(x_{1}, x_{2}, \ldots\right): x_{i} \in[0 ; 1)\right\}$ by

$$
\varphi(x)=\left(d\left(q_{1} ; x\right), d\left(q_{2} ; x\right), \ldots\right)
$$

Prove that φ is injective. Viewing $[0 ; 1)^{\mathbb{N}}$ as a metric space with the metric $d(x, y)=$ $\sum_{i=1}^{\infty}\left|x_{i}-y_{i}\right| 2^{-i}$, prove that φ is also continuous.
Exercise 7. Consider the map $\psi:[0 ; 1)^{\mathbb{N}} \mapsto[0 ; 1)$, defined as follows: if $x=$ $\left(x_{1}, x_{2}, \ldots\right)$ and $x_{i j} \in\{0,1\}$ are the binary digits of x_{i} (that is, $x_{i}=\sum_{j=1}^{\infty} x_{i j} 2^{-j}$, with the convention that infinite tails of 1's are prohibited), define $\psi(x)$ to be the real number whose binary digits are $x_{11}, x_{12}, x_{21}, x_{13}, x_{22}, x_{31}, \ldots$, etc. Formally,

$$
\psi(x)=\sum_{m=2}^{\infty} \sum_{n=1}^{m-1} x_{n, m-n} 2^{-m(m-1) / 2-n}
$$

Prove that $\psi(x)$ is $\mathcal{B}\left([0 ; 1)^{\mathbb{N}}\right)$-to- $\mathcal{B}([0 ; 1))$ measurable and injective, that $A:=\psi\left([0 ; 1)^{\mathbb{N}}\right)$ is Borel measurable, and that $\psi^{-1}: A \mapsto[0 ; 1)^{\mathbb{N}}$ is also measurable.

Exercise 8. Let M be a metric space which is a countable union of compacts. Derive from the previous two exercises that $(M ; \mathcal{B}(M))$ is isomorphic as a measurable space to a Borel subset B of \mathbb{R}, that is, there exists a measurable bijection $\rho: M \mapsto B$ with measurable inverse. Conclude that any random variable with values in M has regular conditional distributions.

