Exercise 1. There is a bus stop in Springfield; the buses arrive to the stop in a Poisson process with intensity 1 (the service started long time ago). Homer comes to the stop and wants to figure out the expected time to wait for the bus. He argues as follows: "I know that the intervals between buses are exponentially distributed with parameter 1 , therefore, they have expected duration 1 . On average, a person who arrives at the stop waits for a half of that interval. Therefore, my expected waiting time is $\frac{1}{2}$ ". Is Homer right? If not, what's wrong with his reasoning?

We say that a stochastic process X_{t} has finite-dimensional marginals of the Poisson process if $X_{0}=0$ and for any $0=a_{0} \leq a_{1} \leq \cdots \leq a_{n}$, the random variables $X_{a_{i}}-X_{a_{i-1}}$ are independent and Poisson distributed:

$$
\mathbb{P}\left(X_{a_{i}}-X_{a_{i-1}}=m\right)=\frac{\varepsilon_{i}^{m}}{m!} e^{-\varepsilon_{i}}, \quad m=0,1, \ldots
$$

where $\varepsilon_{i}=a_{i}-a_{i-1}$. In Exercise 5, it will be proven that if such a process is almost surely increasing and right-continuous, then it is a Poisson process. You may use this fact in Exercises 2-3.

Exercise 2. Let X_{t} and Y_{t} be two independent Poisson processes with intensities λ_{x} and λ_{y}, respectively. Prove that $X_{t}+Y_{t}$ is a Poisson process with intensity $\lambda_{x}+\lambda_{y}$.

Exercise 3. Let X_{t} be a Poisson process with intensity λ, and let $\zeta_{1}, \zeta_{2}, \ldots$ be p-Bernoulli random variables $\left(\mathbb{P}\left(\zeta_{i}=1\right)=1-\mathbb{P}\left(\zeta_{1}=0\right)=p\right)$, independent of X_{t} and among themselves. Define

$$
Y_{t}:=\zeta_{1}+\cdots+\zeta_{X_{t}}
$$

(Every time X_{t} jumps, we flip a coin and make Y_{t} jump if the coin comes up heads.) Prove that Y_{t} is a Poisson process with intensity λp.

Exercise 4. Show by an example that a stochastic process with finite-dimensional marginals of the Poisson process can be discontinuous at every point almost surely.
Exercise 5. Let X_{t} be a stochastic process with finite-dimensional marginals of the Poisson process such that the random function $t \mapsto X_{t}$ is almost surely increasing and right-continuous. Prove that there exist exponentially distributed i. i. d. random variables ξ_{1}, ξ_{2}, \ldots such that almost surely, $X_{t}=\max \left\{n: \xi_{1}+\cdots+\xi_{n} \leq t\right\}$ for all $t \geq 0$. (In this situation, one says that X_{t} is indistinguishable from a Poisson process.)

Exercise 6. Let X_{t} be a stochastic process with finite-dimensional marginals of the Poisson process. Define, for $t \geq 0, \tilde{X}_{t}=\inf \left\{X_{q}: q \in \mathbb{Q}, q>t\right\}$.
(1) Prove that \tilde{X}_{t} is a stochastic process, that is, \tilde{X}_{t} is measurable for all t.
(2) Prove that almost surely, \tilde{X}_{t} is increasing, right-continuous, and $X_{t} \in \mathbb{Z}_{\geq 0}$ for all t.
(3) Prove that for every $t \geq 0, X_{t}=\tilde{X}_{t}$ almost surely (in this situation, \tilde{X}_{t} is called a modification of X_{t}. Note that "for every $t \geq 0, X_{t}=\tilde{X}_{t}$ almost surely" is not the same as "almost surely, $X_{t}=\tilde{X}_{t}$ for every $t \geq 0 "$.)
Exercise 7. Let $\mathcal{G}_{1} \subset \mathcal{G}_{2}$ be two σ-algebras. Prove that

$$
\mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{G}_{1}\right) \mid \mathcal{G}_{2}\right)=\mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{G}_{2}\right) \mid \mathcal{G}_{1}\right)=\mathbb{E}\left(X \mid \mathcal{G}_{1}\right) .
$$

Exercise 8. Let (X, Y) be a centered Gaussian vector with covariance operator Σ. Compute $\mathbb{E}(X \mid Y)$ and $\mathbb{E}\left(X^{2} \mid Y\right)$.

