Exercise 1. Consider a Markov chain with $S = \{1, 2, 3, 4, 5, 6\}$ and the transition matrix

$$P = \begin{pmatrix} 0 & 2/3 & 0 & 0 & 1/3 & 0 \\ 1/3 & 1/3 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 1/2 & 0 & 0 & 0 & 1/2 & 0 \\ 0 & 0 & 1/2 & 0 & 0 & 1/2 \end{pmatrix}.$$

Determine whether this Markov chain is irreducible and whether it is aperiodic. Does it have a unique stationary distribution?

Exercise 2. Consider the following method of card shuffling: take the card from the top of the deck and insert it into a random position in the deck, chosen uniformly among all possibilities. Iterate; this is a Markov chain whose state space consists of all possible permutations of the deck. Let X_1, X_2, \ldots denote the states of the chain at time $1, 2, \ldots$, and let N denote the size of the deck.

- (1) Let A be the card that was initially at the *bottom* of the deck. Convince yourself and the tutor that at any given moment of time, the cards below A are perfectly shuffled (i. e., all possible orders have equal probabilities).
- (2) Let τ be the (random) time at which A is picked from the top of the deck and put somewhere in the deck. Prove that, for any permutation π , $\mathbb{P}(X_n = \pi | \tau \leq n) = \frac{1}{N!}$, where N is the number of cards in the deck. In other words, after the time τ the deck is perfectly shuffled.
- (3) Convince yourself and the tutor that τ has the same distribution as

$$\xi_1 + \cdots + \xi_N$$
,

where ξ_i are independent, and ξ_i is geometric with parameter $\alpha_i := \frac{N-i}{N}$, that is $\mathbb{P}(\xi_i = m) = (1 - \alpha_i)\alpha_i^{m-1}$ for all $m \in \mathbb{N}$.

- (4) Prove that $\approx N \log N$ iterations are enough to shuffle the deck well¹.
- (5) Define τ' to be the first time the card A reaches the upper half of the deck. Prove that the probability of τ' being much smaller than $N \log N$ is small². Conclude that $\approx N \log N$ iterations are necessary to shuffle the deck well³.

Exercise 3. Consider an irreducible Markov chain that has a stationary distribution μ . Prove that $\mu(y) > 0$ for any state y.

Exercise 4. Given a Markov chain X_t and a state x, define inductively

$$\tau_x^{(k)} := \min\{t > \tau_x^{(k-1)} : X_t = x\}$$

¹A suggested precise formulation: if $n > N \log(N+1) + \frac{10\pi}{\sqrt{6}}N$, then $d_{TV}(\mu^{(n)};\mu) \leq \frac{1}{50}$, where, as usuall, $\mu^{(n)}$ denotes the distribution of the chain at time n, and μ denotes the uniform distribution on the set of all permutations.

²A suggested estimate: $\mathbb{P}(\tau' < N \log(N/2 - 1)/2 - \frac{\pi}{\sqrt{3}}N) < \frac{1}{2}$ ³A suggested estimate: if $n < N \log(N/2 - 1)/2 - \frac{\pi}{\sqrt{3}}N$, then $d_{TV}(\mu^{(n)}; \mu) \geq \frac{1}{4}$

whete time of k-th visit to x, with $\tau_x^{(0)} := 0$. Prove that $\tau_x^{(2)} - \tau_x^{(1)}, \tau_x^{(3)} - \tau_x^{(2)}, \dots$ are i. i. d. random variables.

Exercise 5. Let X_1, X_2, \ldots be i. i. d. random variables with values in \mathbb{N} (we use the convention that $0 \notin \mathbb{N}$), denote $S_n = \sum_{i=1}^n X_i$, and define

$$N(t) := \max\{n : S_n \le t\}.$$

- Prove that if EX₁ < ∞, then N(t)/t → 1/EX₁ in probability as t → ∞.
 Deduce that if EX₁ = ∞, then N(t)/t → 0 in probability as t → ∞, and hence E(N(t)/t) → 0.

Exercise 6. Prove that, if a Markov chain has a stationary distribution μ , then any state x satisfying $\mu(x) > 0$ is positive recurrent.