Exercise 1. Consider a Markov chain with $S=\{1,2,3,4,5,6\}$ and the transition matrix

$$
P=\left(\begin{array}{cccccc}
0 & 2 / 3 & 0 & 0 & 1 / 3 & 0 \\
1 / 3 & 1 / 3 & 0 & 0 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \\
1 / 2 & 0 & 0 & 0 & 1 / 2 & 0 \\
0 & 0 & 1 / 2 & 0 & 0 & 1 / 2
\end{array}\right)
$$

Determine whether this Markov chain is irreducible and whether it is aperiodic. Does it have a unique stationary distribution?

Exercise 2. Consider the following method of card shuffling: take the card from the top of the deck and insert it into a random position in the deck, chosen uniformly among all possibilities. Iterate; this is a Markov chain whose state space consists of all possible permutations of the deck. Let X_{1}, X_{2}, \ldots denote the states of the chain at time $1,2, \ldots$, and let N denote the size of the deck.
(1) Let A be the card that was initially at the bottom of the deck. Convince yourself and the tutor that at any given moment of time, the cards below A are perfectly shuffled (i. e., all possible orders have equal probabilities).
(2) Let τ be the (random) time at which A is picked from the top of the deck and put somewhere in the deck. Prove that, for any permutation π, $\mathbb{P}\left(X_{n}=\pi \mid \tau \leq n\right)=\frac{1}{N!}$, where N is the number of cards in the deck. In other words, after the time τ the deck is perfectly shuffled.
(3) Convince yourself and the tutor that τ has the same distributinon as

$$
\xi_{1}+\cdots+\xi_{N}
$$

where ξ_{i} are independent, and ξ_{i} is geometric with parameter $\alpha_{i}:=\frac{N-i}{N}$, that is $\mathbb{P}\left(\xi_{i}=m\right)=\left(1-\alpha_{i}\right) \alpha_{i}^{m-1}$ for all $m \in \mathbb{N}$.
(4) Prove that $\approx N \log N$ iterations are enough to shuffle the deck well ${ }^{1}$.
(5) Define τ^{\prime} to be the first time the card A reaches the upper half of the deck. Prove that the probability of τ^{\prime} being much smaller than $N \log N$ is small ${ }^{2}$. Conclude that $\approx N \log N$ iterations are necessary to shuffle the deck well ${ }^{3}$.

Exercise 3. Consider an irreducible Markov chain that has a stationary distribution μ. Prove that $\mu(y)>0$ for any state y.

Exercise 4. Given a Markov chain X_{t} and a state x, define inductively

$$
\tau_{x}^{(k)}:=\min \left\{t>\tau_{x}^{(k-1)}: X_{t}=x\right\}
$$

[^0]whe time of k-th visit to x, with $\tau_{x}^{(0)}:=0$. Prove that $\tau_{x}^{(2)}-\tau_{x}^{(1)}, \tau_{x}^{(3)}-\tau_{x}^{(2)}, \ldots$ are i. i. d. random variables.

Exercise 5. Let X_{1}, X_{2}, \ldots be i. i. d. random variables with values in \mathbb{N} (we use the convention that $0 \notin \mathbb{N}$), denote $S_{n}=\sum_{i=1}^{n} X_{i}$, and define

$$
N(t):=\max \left\{n: S_{n} \leq t\right\}
$$

(1) Prove that if $\mathbb{E} X_{1}<\infty$, then $\frac{N(t)}{t} \rightarrow \frac{1}{\mathbb{E} X_{1}}$ in probability as $t \rightarrow \infty$.
(2) Deduce that if $\mathbb{E} X_{1}=\infty$, then $\frac{N(t)}{t} \rightarrow 0$ in probability as $t \rightarrow \infty$, and hence $\mathbb{E}(N(t) / t) \rightarrow 0$.
Exercise 6. Prove that, if a Markov chain has a stationary distribution μ, then any state x satisfying $\mu(x)>0$ is positive recurrent.

[^0]: ${ }^{1}$ A suggested precise formulation: if $n>N \log (N+1)+\frac{10 \pi}{\sqrt{6}} N$, then $d_{T V}\left(\mu^{(n)} ; \mu\right) \leq \frac{1}{50}$, where, as usuall, $\mu^{(n)}$ denotes the distribution of the chain at time n, and μ denotes the uniform distribution on the set of all permutations.
 ${ }^{2}$ A suggested estimate: $\mathbb{P}\left(\tau^{\prime}<N \log (N / 2-1) / 2-\frac{\pi}{\sqrt{3}} N\right)<\frac{1}{2}$
 ${ }^{3}$ A suggested estimate: if $n<N \log (N / 2-1) / 2-\frac{\pi}{\sqrt{3}} N$, then $d_{T V}\left(\mu^{(n)} ; \mu\right) \geq \frac{1}{4}$

