
Probability theory II - exercise set II

Exercise 1. Let X1, X2, . . . be i. i. d. 1
2 -Bernoulli random variables. Prove that

Yn = (Xn+1;Xn) ∈ {±1}2 is a Markov chain. Compute its transition matrix and
its stationary distribution. Bonus question: is Xn+1 +Xn a Markov chain?

Exercise 2. Given p ∈ (0; 1) and q ∈ (0; 1), denote a = p(1 − q), b = q(1 − p)
and c = 1− a− b. Recall that the queueing process was defined to be the Markov
chain with the state space S = Z≥0 (number of customers in the queue), with the
transition matrix given by

Pxy =


a, y = x+ 1;

b, y = x− 1;

c, y = x;

0, else,

x > 0, and P0y =


1− p, y = 0

p, y = 1

0 else

(p is the probability that a new customer arrives, and q is the probability that a
customer is served, should there be any in the queue). Prove that, when p ≥ q,
the queueing process does not have a stationary distribution, while for p < q there
exists a unique stationary distribution. Compute that distribution.

In Exercises 3-7, we consider a simple random walk Xn on the group

S = (Z/2Z)N = {(x1, . . . , xN ) : xi ∈ {0, 1}},
that is, a Markov process with state space S and with transition matrix

Pxy =

{
1
N , if the strings x and y differ in exactly one bit
0, otherwise.

The ultimate goal, achieved in Exercise 8, is to solve the Ehrenfest diffusion model.

Exercise 3. (Fourier-Walsh basis) For every T ⊂ {1, . . . , N}, define the function
fT : S → R by

fT ((x1, . . . , xN )) =
∏
j∈T

eπixj =
∏
j∈T

(−1)xj .

Prove that fT are orthogonal as row vectors, that is,∑
x∈S

fT (x)fT ′(x) =

{
0, T 6= T ′,

2N , T = T ′,

Exercise 4. (Fourier-Walsh transform) Prove that every function µ : S → R can
be written as

µ =
∑

T⊂{1,...,N}

µT fT ,

where the coefficients µT ∈ R are given by

µT =
1

2N

∑
x∈S

µ(x)fT (x).

Exercise 5. Prove that for every T , fT is an eigenvector of P , that is, fTP = λT fT .
Compute λT .
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Exercise 6. Given x, y ∈ S, compute (Pn)xy explicitly in terms of fT (x) and
fT (y), T ⊂ {1, . . . , N}.

Exercise 7. Prove that, for any x, y ∈ S,
(Pn)xy = (1± (−1)n)2−N +O (αnN ) as n→∞,

where “±” is “+” if and only if the total number of 1’s in x and y is even, and
αN = 1− 2

N .

Exercise 8. Prove that, in the Ehrenfest diffusion model, for any states k, k′ ∈
{0, . . . , N} (representing the number of particles in chamber 1), one has

Pk′(Xn = k) = (1 + (−1)n+k+k
′
)

N !

k!(N − k)!
2−N +O(αnN ), n→∞.


