Exercise 1. Let X_{1}, X_{2}, \ldots be i. i. d. $\frac{1}{2}$-Bernoulli random variables. Prove that $Y_{n}=\left(X_{n+1} ; X_{n}\right) \in\{ \pm 1\}^{2}$ is a Markov chain. Compute its transition matrix and its stationary distribution. Bonus question: is $X_{n+1}+X_{n}$ a Markov chain?
Exercise 2. Given $p \in(0 ; 1)$ and $q \in(0 ; 1)$, denote $a=p(1-q), b=q(1-p)$ and $c=1-a-b$. Recall that the queueing process was defined to be the Markov chain with the state space $S=\mathbb{Z}_{\geq 0}$ (number of customers in the queue), with the transition matrix given by

$$
P_{x y}=\left\{\begin{array}{ll}
a, & y=x+1 ; \\
b, & y=x-1 ; \\
c, & y=x ; \\
0, & \text { else },
\end{array} \quad x>0, \text { and } P_{0 y}= \begin{cases}1-p, & y=0 \\
p, & y=1 \\
0 & \text { else }\end{cases}\right.
$$

(p is the probability that a new customer arrives, and q is the probability that a customer is served, should there be any in the queue). Prove that, when $p \geq q$, the queueing process does not have a stationary distribution, while for $p<q$ there exists a unique stationary distribution. Compute that distribution.

In Exercises 3-7, we consider a simple random walk X_{n} on the group

$$
S=(\mathbb{Z} / 2 \mathbb{Z})^{N}=\left\{\left(x_{1}, \ldots, x_{N}\right): x_{i} \in\{0,1\}\right\},
$$

that is, a Markov process with state space S and with transition matrix

$$
P_{x y}= \begin{cases}\frac{1}{N}, & \text { if the strings } x \text { and } y \text { differ in exactly one bit } \\ 0, & \text { otherwise }\end{cases}
$$

The ultimate goal, achieved in Exercise 8, is to solve the Ehrenfest diffusion model.
Exercise 3. (Fourier-Walsh basis) For every $T \subset\{1, \ldots, N\}$, define the function $f_{T}: S \rightarrow \mathbb{R}$ by

$$
f_{T}\left(\left(x_{1}, \ldots, x_{N}\right)\right)=\prod_{j \in T} e^{\pi i x_{j}}=\prod_{j \in T}(-1)^{x_{j}}
$$

Prove that f_{T} are orthogonal as row vectors, that is,

$$
\sum_{x \in S} f_{T}(x) f_{T^{\prime}}(x)= \begin{cases}0, & T \neq T^{\prime} \\ 2^{N}, & T=T^{\prime}\end{cases}
$$

Exercise 4. (Fourier-Walsh transform) Prove that every function $\mu: S \rightarrow \mathbb{R}$ can be written as

$$
\mu=\sum_{T \subset\{1, \ldots, N\}} \mu_{T} f_{T}
$$

where the coefficients $\mu_{T} \in \mathbb{R}$ are given by

$$
\mu_{T}=\frac{1}{2^{N}} \sum_{x \in S} \mu(x) f_{T}(x)
$$

Exercise 5. Prove that for every T, f_{T} is an eigenvector of P, that is, $f_{T} P=\lambda_{T} f_{T}$. Compute λ_{T}.

Exercise 6. Given $x, y \in S$, compute $\left(P^{n}\right)_{x y}$ explicitly in terms of $f_{T}(x)$ and $f_{T}(y), T \subset\{1, \ldots, N\}$.
Exercise 7. Prove that, for any $x, y \in S$,

$$
\left(P^{n}\right)_{x y}=\left(1 \pm(-1)^{n}\right) 2^{-N}+O\left(\alpha_{N}^{n}\right) \text { as } n \rightarrow \infty
$$

where " \pm " is " + " if and only if the total number of 1 's in x and y is even, and $\alpha_{N}=1-\frac{2}{N}$.

Exercise 8. Prove that, in the Ehrenfest diffusion model, for any states $k, k^{\prime} \in$ $\{0, \ldots, N\}$ (representing the number of particles in chamber 1), one has

$$
\mathbb{P}_{k^{\prime}}\left(X_{n}=k\right)=\left(1+(-1)^{n+k+k^{\prime}}\right) \frac{N!}{k!(N-k)!} 2^{-N}+O\left(\alpha_{N}^{n}\right), \quad n \rightarrow \infty .
$$

