Probability theory II - exercise set I

In exercises $1-7, X_{1}, X_{2}, \ldots$ denote independent $\frac{1}{2}$-Bernoulli random variables $\left(\mathbb{P}\left(X_{i}=1\right)=\mathbb{P}\left(X_{i}=-1\right)=\frac{1}{2}\right)$, so $S_{n}=\sum_{i=1}^{n} X_{i}$ is a simple random walk on \mathbb{Z}.
Exercise 1. Check that $\frac{1}{2} S_{2}, \frac{1}{2} S_{4}, \frac{1}{2} S_{6} \ldots$ is a random walk on \mathbb{Z} that satisfies the conditions of the Local Central Limit Theorem. Deduce that, as $n \rightarrow \infty$,

$$
\mathbb{P}\left(S_{2 n}=0\right) \sim \frac{1}{\sqrt{\pi n}}
$$

Exercise 2. (Method of reflections) Given $a \in \mathbb{Z}$, denote, as in the lecture notes, $\tau_{a}:=\min \left\{n>0: S_{n}=a\right\}$. Let

$$
X_{i}^{\prime}:= \begin{cases}X_{i}, & i \leq \tau_{a} \\ -X_{i}, & i>\tau_{a}\end{cases}
$$

Prove that $X_{1}^{\prime}, X_{2}^{\prime}, \ldots$ are independent $\frac{1}{2}$-Bernoulli random variables, and hence $S_{n}^{\prime}=\sum_{i=1}^{n} X_{i}^{\prime}$ is again a simple random walk.
Exercise 3. Prove that, for every $a, m \in \mathbb{Z}$ such that $0<a<m$, and every $n \in \mathbb{N}$, one has

$$
\mathbb{P}\left(S_{n}=m\right)=\mathbb{P}\left(S_{n}=2 a-m \text { and } \tau_{a} \leq n\right)
$$

Exercise 4. Prove that

$$
\mathbb{P}\left(S_{2 n}=2 m\right)=\frac{(2 n)!}{(n-m)!(n+m)!} \cdot 2^{-2 n}
$$

Deduce from this and from the previous exercise that, for every $n \in \mathbb{N}$,

$$
\mathbb{P}\left(\tau_{0}=2 n\right)=C_{n-1} \cdot 2^{-2 n+1}
$$

where $C_{n}=\frac{(2 n)!}{n!(n+1)!}$ is the n-th Catalan number.
Exercise 5. Prove that $\mathbb{E}\left(\tau_{0}\right)=+\infty$. Generalize this result to arbitrary random walks with centered steps on \mathbb{Z}^{d} satisfying the conditions of the Local Central Limit theorem.
Exercise 6. Let $a, b \in \mathbb{Z}$ be such that $a<0$ and $b>0$. Prove that

$$
\mathbb{E}\left(\min \left(\tau_{a}, \tau_{b}\right)\right)<\infty
$$

Exercise 7. Compute $\mathbb{E}\left(\min \left(\tau_{a}, \tau_{b}\right)\right)$ for $a<0, b>0$.
Exercise 8. (Discrete Dirichlet problem via random walks) A function $h: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ is called discrete harmonic at $z \in \mathbb{Z}^{d}$ if $h(z)=\frac{1}{2 d} \sum_{z^{\prime} \sim z} h\left(z^{\prime}\right)$, where the sum is over the $2 d$ lattice neighbors $z \pm e_{1}, \ldots, z \pm e_{d}$ of z. Given a nonempty set $A \subset \mathbb{Z}^{d}$ and $x \in \mathbb{Z}^{d}$, let $\tau_{A}^{x}:=\min \left\{n \geq 0: x+S_{n} \in A\right\}$, where S_{n} is a simple random walk on \mathbb{Z}^{d}. Prove that, for any $f: A \cup \infty \rightarrow \mathbb{R}$, the function

$$
h(x):=\mathbb{E}\left(f\left(x+S_{\tau_{A}^{x}}\right)\right)
$$

is bounded, harmonic at all points of $\mathbb{Z}^{d} \backslash A$, and satisfies $h(x)=f(x)$ for all $x \in A$. Here we define $x+S_{\tau_{A}^{x}}=\infty$ if $\tau_{A}^{x}=\infty$.

