Exercise 1. Prove that if $X_i \xrightarrow{\mathcal{D}} X$, then the sequence X_i is tight.

Exercise 2. Give examples of scalar random variables X_1, X_2, \ldots such that

- $X_i \xrightarrow{\mathcal{P}} 0$, but $X_i \xrightarrow{L^1} 0$. $X_i \xrightarrow{L^1} 0$, but $X_i \xrightarrow{L^2} 0$. $X_i \xrightarrow{\mathcal{P}} 0$, but almost surely, $X_i \neq 0$.

Exercise 3. Let $p \ge 1$. Prove that if $X_i \xrightarrow{\mathcal{P}} X$, and there exists a random variable $Y \ge 0$ with $\mathbb{E}Y^p < \infty$ such that for all $i, |X_i| \le Y$ almost surely, then $X_i \xrightarrow{L^p} X$. Hint: you may find useful Minkowski's inequality

$$(\mathbb{E}|X+Y|^p)^{\frac{1}{p}} \le (\mathbb{E}|X|^p)^{\frac{1}{p}} + (\mathbb{E}|Y|^p)^{\frac{1}{p}}$$

Exercise 4. Assume that the events E_1, E_2, \ldots are independent, and denote $N(\omega) := \#\{i : \omega \in E_i\}$. Prove that if $\sum_{i=1}^{\infty} \mathbb{P}(E_i) = \infty$, then $\mathbb{P}(N = \infty) = 1$.

Exercise 5. Let X_1, X_2, \ldots be i. i. d., centered random variables and let $k \in \mathbb{N}$ be such that $\mathbb{E}X_1^{2k} < \infty$. Prove that there exists a constant C > 0 such that

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}\right| > \varepsilon\right) \leq \frac{C}{\varepsilon^{2k}n^{k}}.$$

Exercise 6. Compute the characteristic functions of an exponential random variable and of $\frac{1}{2}$ -Bernoulli random variable.

Exercise 7. Let F_X, F_Y be distribution functions of random variables X, Y. Define the Lévy's distance between F_X and F_Y by

 $d(F_X, F_Y) := \inf\{\delta > 0 : F_X(x - \delta) - \delta \le F_Y(x) \le F_X(x + \delta) + \delta \text{ for all } x \in \mathbb{R}\}.$ Prove that $d(F_X, F_Y)$ is a metric on the set of all distribution functions, and that $d(F_{X_i}, F_X) \to 0$ if and only if $X_i \xrightarrow{\mathcal{D}} X$.