Osittaisdifferentiaaliyhtälöt DEMO 9

1. Write down an explicit formula for a solution of

$$
\begin{cases}u_{t}-\Delta u+c u=f & \text { in } \mathbb{R}^{n} \times(0, \infty) \\ u=g & \text { on } \mathbb{R}^{n} \times\{t=0\}\end{cases}
$$

where $c \in \mathbb{R}$.
2. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be smooth and convex. Assume that u solves the heat equation (that is, $u_{t}-\Delta u=0$) and $v=\phi(u)$. Prove that v is a subsolution of the heat equation, i.e. $v_{t}-\Delta v \leq 0$.
3. Prove that $v=|D u|^{2}+u_{t}^{2}$ is a subsolution of the heat equation, where u solves the heat equation.

