Osittaisdifferentiaaliyhtälöt DEMO 8

1. Suppose that u is a smooth solution of the heat equation

$$
u_{t}-\Delta u=0
$$

in $\mathbb{R}^{n} \times(0, \infty)$. Show that
i) $v(x, t)=u\left(\lambda x, \lambda^{2} t\right)$ is a solution of the heat equation for each $\lambda \in \mathbb{R}$.
ii) $w(x, t)=x \cdot D u(x, t)+2 t u_{t}(x, t)$ is also a solution of the heat equation.
2. Let $u(x, t)=v\left(\frac{x^{2}}{t}\right), x \in \mathbb{R}, t \in(0, \infty)$.
i) Show that

$$
u_{t}-u_{x x}=0
$$

if and only if

$$
\begin{equation*}
4 z v^{\prime \prime}(z)+(2+z) v^{\prime}(z)=0 \tag{1}
\end{equation*}
$$

ii) Show that

$$
v(z)=C_{1} \int_{0}^{z} e^{-s / 4} s^{-1 / 2} d s+C_{2}
$$

is a solution of equation (1).
iii) Differentiate $v\left(x^{2} / t\right)$ with respect to x to obtain the fundamental solution.
3. Solve the following initial-boundary value problem

$$
\begin{cases}u_{t}-\Delta u=0, & \text { in } B(0,1) \times(0, \infty) \\ u(x, 0)=v(x), & \text { for } x \in B(0,1) ; \\ u(x, t)=0, & \text { for } x \in \partial B(0,1), t>0\end{cases}
$$

where v is an eigenfunction of $-\Delta$ in $B(0,1)$, that is,

$$
-\Delta v=\lambda v, \text { in } B(0,1)
$$

for an eigenvalue λ.

