Osittaisdifferentiaaliyhtälöt

DEMO7

1. Let u be a smooth solution of

$$
\begin{cases}-\Delta u=f & \text { in } B(0,1) \subset \mathbb{R}^{n} \\ u=g & \text { on } \partial B(0,1)\end{cases}
$$

Prove that

$$
\max _{B(0,1)}|u| \leq c\left(\max _{\partial B(0,1)}|g|+\max _{B(0,1)}|f|\right),
$$

where $c=c(n)>0$.
2. Use Poisson's formula to prove that

$$
r^{n-2} \frac{r-|x|}{(r+|x|)^{n-1}} u(0) \leq u(x) \leq r^{n-2} \frac{r+|x|}{(r-|x|)^{n-1}} u(0)
$$

whenever u is positive and harmonic in $B(0, r) \subset \mathbb{R}^{n}$.
3. Prove that

$$
\pi^{2}=\inf \left\{\int_{0}^{1}\left(w^{\prime}\right)^{2} d x: w \in C^{2}(0,1) \cap C^{1}([0,1]), w(0)=w(1)=0, \int_{0}^{1} w^{2} d x=1\right\}
$$

4. Calculate the principal eigenvalue $\lambda_{1}(\Omega)$ of $-\Delta$ for

$$
\Omega=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<1,0<y<1\right\} .
$$

(Hint: consider $u(x, y)=\sin (\pi x) \sin (\pi y)$.)
5 . Let Ω be a bounded smooth domain in \mathbb{R}^{n}. Suppose that the following Neumann problem

$$
\begin{cases}-\Delta u=\lambda u & \text { in } \Omega ; \\ \frac{\partial u}{\partial \nu}=0 & \text { on } \partial \Omega\end{cases}
$$

has a non-trivial solution $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$. Show that $\lambda \geq 0$.

