Osittaisdifferentiaaliyhtälöt
 DEMO 4

1. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain. Suppose that $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ satisfies

$$
-\Delta u \leq 0 \quad \text { in } \Omega
$$

Prove that
i)

$$
u(x) \leq f_{B(x, r)} u(y) d y \quad \text { for all balls } B(x, r) \subset \Omega ;
$$

ii)

$$
\max _{\bar{\Omega}} u=\max _{\partial \Omega} u
$$

2. Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth and convex function. Assume that u is harmonic in
Ω. Let $v=\varphi(u)$. Prove that

$$
-\Delta v \leq 0 \quad \text { in } \Omega
$$

3. Assume that u is harmonic in Ω. Let $v=|D u|^{2}$. Prove that

$$
-\Delta v \leq 0 \quad \text { in } \Omega
$$

4. Let $B(0, r)$ be a ball in $\mathbb{R}^{n}, n \geq 3$. Suppose that $u \in C^{2}(B(0, r)) \cap C(\overline{B(0, r)})$ is a solution to the boundary value problem

$$
\begin{cases}-\Delta u=f & \text { in } B(0, r) ; \\ u=g & \text { on } \partial B(0, r)\end{cases}
$$

Modify the proof of the mean value formula to show that

$$
u(0)=f_{\partial B(0, r)} g(x) d S(x)+\frac{1}{n(n-2) \alpha_{n}} \int_{B(0, r)}\left(\frac{1}{|x|^{n-2}}-\frac{1}{r^{n-2}}\right) f(x) d x
$$

5. Prove that there is a unique solution $u \in C^{2}(B(0,1)) \cap C(\overline{B(0,1)})$ to the following boundary value problem

$$
\begin{cases}\Delta u=0 & \text { in } B(0,1) \\ u=1 & \text { on } \partial B(0,1)\end{cases}
$$

6. Prove that there is a unique solution $u \in C^{2}(B(0,1)) \cap C(\overline{B(0,1)})$ to the following boundary value problem

$$
\begin{cases}\Delta u=u^{3} & \text { in } B(0,1) \\ u=0 & \text { on } \partial B(0,1)\end{cases}
$$

(Hint: apply conclusion ii) of problem 1 in this exercise.)

