Osittaisdifferentiaaliyhtälöt

DEMO 3

1. Write down an explicit formula for a function u solving

$$
\begin{cases}u_{t}+b \cdot D u+c u=0 & \text { in } \mathbb{R}^{n} \times(0, \infty) \tag{1}\\ u=g & \text { on } \mathbb{R}^{n} \times\{t=0\}\end{cases}
$$

Here $c \in \mathbb{R}$ and $b \in \mathbb{R}^{n}$ are constants.
Solution. We define a new function $v: \mathbb{R}^{n} \times(0, \infty) \rightarrow \mathbb{R}$ as follows

$$
v(x, t)=u(x, t) \exp (c t) .
$$

Then it is easy to check that function v is a solution to the following initial value problem

$$
\begin{cases}v_{t}+b \cdot D v=0 & \text { in } \mathbb{R}^{n} \times(0, \infty) \\ v=g & \text { on } \mathbb{R}^{n} \times\{t=0\}\end{cases}
$$

The unique solution to the above linear transport equation is

$$
v(x, t)=g(x-t b) .
$$

Thus the unique solution to the initial value problem (1) is

$$
u(x, t)=g(x-t b) \exp (-c t)
$$

2. Let $u \in C^{1}\left(\mathbb{R}^{n}\right)$ and

$$
\varphi(r)=f_{\partial B(x, r)} u(y) d S(y)
$$

Prove that

$$
\varphi^{\prime}(r)=f_{\partial B(0,1)} D u(x+r y) \cdot y d S(y)
$$

Proof. We rewrite φ by changing variables as follows

$$
\varphi(r)=f_{\partial B(0,1)} u(x+r y) d S(y)
$$

Now fix $r>0$, and let $h \in \mathbb{R}$. We consider the difference quotient

$$
\begin{equation*}
\frac{\varphi(r+h)-\varphi(r)}{h}=f_{\partial B(0,1)} \frac{u(x+r y+h y)-u(x+r y)}{h} d S(y) . \tag{2}
\end{equation*}
$$

Now for the integrand function of the integral on the right hand side, we have by the fundamental theorem of calculus that

$$
\begin{align*}
\frac{u(x+r y+h y)-u(x+r y)}{h} & =\frac{1}{h} \int_{0}^{1} \frac{d}{d t} u(x+r y+t h y) d t \\
& =\int_{0}^{1} D u(x+r y+t h y) \cdot y d t \tag{3}
\end{align*}
$$

where the second equality follows from the chain rule and the assumption that $u \in C^{1}\left(\mathbb{R}^{n}\right)$. It follows from (2) and (3) that

$$
\begin{align*}
& \frac{\varphi(r+h)-\varphi(r)}{h}-f_{\partial B(0,1)} D u(x+r y) \cdot y d S(y) \\
= & f_{\partial B(0,1)} \int_{0}^{1}(D u(x+r y+t h y)-D u(x+r y)) \cdot y d t d S(y) . \tag{4}
\end{align*}
$$

Now since $u \in C^{1}\left(\mathbb{R}^{n}\right)$, we have that $\partial_{x_{i}} u$ is continuous in \mathbb{R}^{n} for each $i=1,2, \ldots, n$. Thus it is uniformly continuous in $\overline{B(x, r+|h|)}$. This means that for any $\varepsilon>0$, there is $\delta>0$, depending only on ε, such that

$$
\begin{equation*}
\left|\partial_{i} u(z)-\partial_{i} u(w)\right|<\varepsilon / n^{1 / 2} \tag{5}
\end{equation*}
$$

for each $i=1,2, \ldots, n$ and for all $z, w \in \overline{B(x, r+|h|)}$ such that

$$
|z-w|<\delta
$$

It follows from (5) that

$$
\begin{equation*}
|D u(z)-D u(w)|<\varepsilon \tag{6}
\end{equation*}
$$

for all $z, w \in \overline{B(x, r+|h|)}$ such that

$$
|z-w|<\delta
$$

Now we go back to (4). Note that

$$
x+r y+t h y \in \overline{B(x, r+|h|)}, \quad x+r y \in \overline{B(x, r+|h|)}
$$

for all $y \in \partial B(0,1)$ and all $t \in[0,1]$. Note also that

$$
|x+r y+t h y-(x+r y)|=t|h|
$$

Thus if $|h|<\delta$, we have by (6) that

$$
\begin{equation*}
|D u(x+r y+t h y)-D u(x+r y)|<\varepsilon \tag{7}
\end{equation*}
$$

for all $y \in \partial B(0,1)$ and all $t \in[0,1]$. It follows easily from (4) and (7) that

$$
\left|\frac{\varphi(r+h)-\varphi(r)}{h}-f_{\partial B(0,1)} D u(x+r y) \cdot y d S(y)\right|<\varepsilon .
$$

The above inequality holds, provided that $|h|<\delta$. This show that

$$
\lim _{h \rightarrow 0} \frac{\varphi(r+h)-\varphi(r)}{h}=f_{\partial B(0,1)} D u(x+r y) \cdot y d S(y),
$$

from which it follows that

$$
\varphi^{\prime}(r)=f_{\partial B(0,1)} D u(x+r y) \cdot y d S(y)
$$

The proof is complete.
3. Find a solution to the following boundary value problem

$$
\begin{cases}\Delta u=u^{3} & \text { in } B(0,1) \\ u=0 & \text { on } \partial B(0,1)\end{cases}
$$

Solution. It is obvious that

$$
u(x)=0, \quad x \in B(0,1)
$$

is a solution.
4. Find a solution to the following boundary value problem

$$
\begin{cases}\Delta u=0 & \text { in } B(0,1) \\ u=1 & \text { on } \partial B(0,1)\end{cases}
$$

Solution. It is obvious that

$$
u(x)=1, \quad x \in B(0,1),
$$

is a solution.
5. Find a solution to the following boundary value problem

$$
\begin{cases}\Delta u=1 & \text { in } \Omega=\left\{x \in \mathbb{R}^{3}: a<|x|<b\right\} \tag{8}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $0<a<b<\infty$.
Solution. We will find a solution of the following form

$$
u(x)=c_{1}|x|^{-1}+c_{2}|x|^{2}+c_{3},
$$

where c_{1}, c_{2}, c_{3} are constants. An easy calculation shows that

$$
\Delta u(x)=6 c_{2}
$$

for $x \neq 0$. Therefore if we set $c_{2}=1 / 6$, then u is a solution to equation

$$
\Delta u=1 \quad \text { in } \Omega .
$$

In order to satisfy the boundary condition $u=0$ on $\partial \Omega$, we need

$$
\left\{\begin{array}{l}
c_{1} a^{-1}+c_{2} a^{2}+c_{3}=0 \\
c_{1} b^{-1}+c_{2} b^{2}+c_{3}=0
\end{array}\right.
$$

From the above system, we obtain that

$$
c_{1}=c_{2} a b(a+b), \quad c_{3}=-c_{2}\left(a^{2}+a b+b^{2}\right) .
$$

Thus

$$
u(x)=\frac{1}{6}\left[a b(a+b)|x|^{-1}+|x|^{2}-\left(a^{2}+a b+b^{2}\right)\right]
$$

is a solution to Dirichlet problem (8).
6. Prove that Laplace's equation

$$
\Delta u=0
$$

is rotation invariant; that is, if O is an orthogonal $n \times n$ matrix and we define

$$
v(x)=u(O x),
$$

then

$$
\begin{equation*}
\Delta v=0 \tag{9}
\end{equation*}
$$

Proof. Let $u=u(y)$ be a harmonic function, that is, $u \in C^{2}$ is a solution of Laplace's equation

$$
\begin{equation*}
\Delta u=0 \tag{10}
\end{equation*}
$$

Now fix an orthogonal matrix $O=\left(o_{i j}\right)$ and let $f=\left(f^{1}, f^{2}, \ldots, f^{n}\right)$ be the linear map

$$
f(x)=O x
$$

that is,

$$
f^{i}(x)=\sum_{k=1}^{n} o_{i k} x_{k}
$$

for all $i=1,2, \ldots, n$. We note that

$$
\begin{equation*}
\partial_{x_{j}} f^{i}(x)=o_{i j} \tag{11}
\end{equation*}
$$

for all $i, j=1,2, \ldots, n$.
Now let $v(x)=u(f(x))$. By chain rule, we have for $i=1,2, \ldots, n$ that

$$
\partial_{x_{i}} v(x)=\sum_{k=1}^{n} \partial_{y_{k}} u(f(x)) \partial_{x_{i}} f^{k}(x)=\sum_{k=1}^{n} o_{k i} \partial_{y_{k}} u(f(x)),
$$

and that

$$
\partial_{x_{i} x_{i}} v(x)=\sum_{k, l=1}^{n} o_{k i} \partial_{y_{l y_{k}}} u(f(x)) \partial_{x_{i}} f^{l}(x)=\sum_{k, l=1}^{n} o_{k i} o_{l i} \partial_{y_{l y} y_{k}} u(f(x)) .
$$

The above equality hold for all $i=1,2, \ldots, n$. Thus we have that

$$
\begin{equation*}
\Delta v(x)=\sum_{k, l=1}^{n}\left(\sum_{i=1}^{n} o_{k i} o_{l i}\right) \cdot \partial_{y_{l} y_{k}} u(f(x)) \tag{12}
\end{equation*}
$$

Since O is an orthogonal matrix, we have that

$$
O^{T} O=I
$$

which means that

$$
\sum_{i=1}^{n} o_{k i} o_{l i}=\delta_{k l}
$$

for all $k, l=1,2, \ldots, n$, where $\delta_{k l}=1$ if $k=l$ and $\delta_{k l}=0$ if $k \neq l$. Thus (12) becomes

$$
\Delta v(x)=\sum_{k, l=1}^{n} \delta_{k l} \partial_{y_{l} y_{k}} u(f(x))=\sum_{k=1}^{n} \partial_{y_{k} y_{k}} u(f(x))=\Delta u(f(x)),
$$

which, together with (10), gives the conclusion (9).

