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1. Write down an explicit formula for a function u solving

(1)

{
ut + b ·Du+ cu = 0 in Rn × (0,∞);

u = g on Rn × {t = 0}.

Here c ∈ R and b ∈ Rn are constants.

Solution. We define a new function v : Rn × (0,∞)→ R as follows

v(x, t) = u(x, t) exp(ct).

Then it is easy to check that function v is a solution to the following initial value
problem {

vt + b ·Dv = 0 in Rn × (0,∞);

v = g on Rn × {t = 0}.
The unique solution to the above linear transport equation is

v(x, t) = g(x− tb).

Thus the unique solution to the initial value problem (1) is

u(x, t) = g(x− tb) exp(−ct).

�

2. Let u ∈ C1(Rn) and

ϕ(r) = −
∫
∂B(x,r)

u(y) dS(y).

Prove that

ϕ′(r) = −
∫
∂B(0,1)

Du(x+ ry) · y dS(y).

Proof. We rewrite ϕ by changing variables as follows

ϕ(r) = −
∫
∂B(0,1)

u(x+ ry) dS(y).

Now fix r > 0, and let h ∈ R. We consider the difference quotient

(2)
ϕ(r + h)− ϕ(r)

h
= −
∫
∂B(0,1)

u(x+ ry + hy)− u(x+ ry)

h
dS(y).

Now for the integrand function of the integral on the right hand side, we have by
the fundamental theorem of calculus that

(3)

u(x+ ry + hy)− u(x+ ry)

h
=

1

h

∫ 1

0

d

dt
u(x+ ry + thy) dt

=

∫ 1

0

Du(x+ ry + thy) · y dt,
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where the second equality follows from the chain rule and the assumption that
u ∈ C1(Rn). It follows from (2) and (3) that

(4)

ϕ(r + h)− ϕ(r)

h
−−
∫
∂B(0,1)

Du(x+ ry) · y dS(y)

=−
∫
∂B(0,1)

∫ 1

0

(
Du(x+ ry + thy)−Du(x+ ry)

)
· y dt dS(y).

Now since u ∈ C1(Rn), we have that ∂xi
u is continuous in Rn for each i = 1, 2, ..., n.

Thus it is uniformly continuous in B(x, r + |h|). This means that for any ε > 0,
there is δ > 0, depending only on ε, such that

(5) |∂iu(z)− ∂iu(w)| < ε/n1/2

for each i = 1, 2, ..., n and for all z, w ∈ B(x, r + |h|) such that

|z − w| < δ.

It follows from (5) that

(6) |Du(z)−Du(w)| < ε

for all z, w ∈ B(x, r + |h|) such that

|z − w| < δ.

Now we go back to (4). Note that

x+ ry + thy ∈ B(x, r + |h|), x+ ry ∈ B(x, r + |h|)

for all y ∈ ∂B(0, 1) and all t ∈ [0, 1]. Note also that

|x+ ry + thy − (x+ ry)| = t|h|.

Thus if |h| < δ, we have by (6) that

(7) |Du(x+ ry + thy)−Du(x+ ry)| < ε

for all y ∈ ∂B(0, 1) and all t ∈ [0, 1]. It follows easily from (4) and (7) that∣∣∣ϕ(r + h)− ϕ(r)

h
−−
∫
∂B(0,1)

Du(x+ ry) · y dS(y)
∣∣∣ < ε.

The above inequality holds, provided that |h| < δ. This show that

lim
h→0

ϕ(r + h)− ϕ(r)

h
= −
∫
∂B(0,1)

Du(x+ ry) · y dS(y),

from which it follows that

ϕ′(r) = −
∫
∂B(0,1)

Du(x+ ry) · y dS(y).

The proof is complete. �



3. Find a solution to the following boundary value problem{
∆u = u3 in B(0, 1);

u = 0 on ∂B(0, 1).

Solution. It is obvious that

u(x) = 0, x ∈ B(0, 1),

is a solution. �

4. Find a solution to the following boundary value problem{
∆u = 0 in B(0, 1);

u = 1 on ∂B(0, 1).

Solution. It is obvious that

u(x) = 1, x ∈ B(0, 1),

is a solution. �

5. Find a solution to the following boundary value problem

(8)

{
∆u = 1 in Ω = {x ∈ R3 : a < |x| < b};
u = 0 on ∂Ω,

where 0 < a < b <∞.

Solution. We will find a solution of the following form

u(x) = c1|x|−1 + c2|x|2 + c3,

where c1, c2, c3 are constants. An easy calculation shows that

∆u(x) = 6c2

for x 6= 0. Therefore if we set c2 = 1/6, then u is a solution to equation

∆u = 1 in Ω.

In order to satisfy the boundary condition u = 0 on ∂Ω, we need{
c1a
−1 + c2a

2 + c3 = 0;

c1b
−1 + c2b

2 + c3 = 0.

From the above system, we obtain that

c1 = c2ab(a+ b), c3 = −c2(a2 + ab+ b2).

Thus

u(x) =
1

6

[
ab(a+ b)|x|−1 + |x|2 − (a2 + ab+ b2)

]
is a solution to Dirichlet problem (8). �



6. Prove that Laplace’s equation
∆u = 0

is rotation invariant; that is, if O is an orthogonal n× n matrix and we define

v(x) = u(Ox),

then

(9) ∆v = 0.

Proof. Let u = u(y) be a harmonic function, that is, u ∈ C2 is a solution of Laplace’s
equation

(10) ∆u = 0.

Now fix an orthogonal matrix O = (oij) and let f = (f 1, f 2, ..., fn) be the linear
map

f(x) = Ox,

that is,

f i(x) =
n∑

k=1

oikxk

for all i = 1, 2, ..., n. We note that

(11) ∂xj
f i(x) = oij

for all i, j = 1, 2, ..., n.
Now let v(x) = u(f(x)). By chain rule, we have for i = 1, 2, ..., n that

∂xi
v(x) =

n∑
k=1

∂yku(f(x))∂xi
fk(x) =

n∑
k=1

oki∂yku(f(x)),

and that

∂xixi
v(x) =

n∑
k,l=1

oki∂ylyku(f(x))∂xi
f l(x) =

n∑
k,l=1

okioli∂ylyku(f(x)).

The above equality hold for all i = 1, 2, ..., n. Thus we have that

(12) ∆v(x) =
n∑

k,l=1

( n∑
i=1

okioli
)
· ∂ylyku(f(x)).

Since O is an orthogonal matrix, we have that

OTO = I,

which means that
n∑

i=1

okioli = δkl

for all k, l = 1, 2, ..., n, where δkl = 1 if k = l and δkl = 0 if k 6= l. Thus (12) becomes

∆v(x) =
n∑

k,l=1

δkl∂ylyku(f(x)) =
n∑

k=1

∂ykyku(f(x)) = ∆u(f(x)),

which, together with (10), gives the conclusion (9). �


