Osittaisdifferentiaaliyhtälöt
 DEMO 3

1. Write down an explicit formula for a function u solving

$$
\begin{cases}u_{t}+b \cdot D u+c u=0 & \text { in } \mathbb{R}^{n} \times(0, \infty) \\ u=g & \text { on } \mathbb{R}^{n} \times\{t=0\}\end{cases}
$$

Here $c \in \mathbb{R}$ and $b \in \mathbb{R}^{n}$ are constants.
2. Let $u \in C^{1}\left(\mathbb{R}^{n}\right)$ and

$$
\varphi(r)=f_{\partial B(x, r)} u(y) d S(y)
$$

Prove that

$$
\varphi^{\prime}(r)=f_{\partial B(0,1)} D u(x+r y) \cdot y d S(y)
$$

3. Find a solution to the following boundary value problem

$$
\begin{cases}\Delta u=u^{3} & \text { in } B(0,1) \\ u=0 & \text { on } \partial B(0,1)\end{cases}
$$

4. Find a solution to the following boundary value problem

$$
\begin{cases}\Delta u=0 & \text { in } B(0,1) \\ u=1 & \text { on } \partial B(0,1)\end{cases}
$$

5. Find a solution to the following boundary value problem

$$
\begin{cases}\Delta u=1 & \text { in } \Omega=\left\{x \in \mathbb{R}^{3}: a<|x|<b\right\} \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $0<a<b<\infty$.
6. Prove that Laplace's equation

$$
\Delta u=0
$$

is rotation invariant; that is, if O is an orthogonal $n \times n$ matrix and we define

$$
v(x)=u(O x),
$$

then

$$
\Delta v=0 .
$$

