Osittaisdifferentiaaliyhtälöt
 DEMO 2

In problems $1-5$, solve: $u=u(x, y)$.
1.

$$
\left\{\begin{array}{l}
2 u_{x}+3 u_{y}=0 \\
u(0, y)=\sin y
\end{array}\right.
$$

2.

$$
\left\{\begin{array}{l}
2 u_{x}+3 u_{y}=x \\
u(0, y)=y
\end{array}\right.
$$

3.

$$
\left\{\begin{array}{l}
2 u_{x}+3 u_{y}=x u \\
u(0, y)=y
\end{array}\right.
$$

4.

$$
\left\{\begin{array}{l}
2 u_{x}+3 u_{y}=x u+x \\
u(0, y)=y
\end{array}\right.
$$

5.

$$
u_{x}+x u_{y}=0 .
$$

6. Let f and g be two given continuous functions and let c be a constant. Solve the following initial value problem:

$$
\left\{\begin{array}{l}
f(y) u_{x}+u_{y}=c u \\
u(x, 0)=g(x) .
\end{array}\right.
$$

[Hint: the solution should be of the form $u(x, y)=e^{c y} g\left(x-\int_{0}^{y} f(z) d z\right)$.]
7. Suppose that $u \in C^{1}\left(\mathbb{R}^{2}\right)$ is a solution of

$$
a(x, y) u_{x}+b(x, y) u_{y}=0 .
$$

Show that for arbitrary $H \in C^{1}(\mathbb{R})$ also $H(u)$ is a solution.

