UH Malliavin Calculus, Fall 2016, Exercises 5 (19 and 26 October 2016)

On the Wiener space, where $H=L^{2}([0, T], \mathcal{B}, d t)$ and $W_{t}=W\left(1_{[0, t]}\right)$ $0 \leq t \leq T$ is Brownian motion. Let $\mathcal{F}_{A}=\sigma\left(W\left(h \mathbf{1}_{A}\right): h \in H\right)$ and $\mathcal{F}_{t}=\mathcal{F}_{[0, t]}$, $t \in[0, T]$.

1. Consider the Black-Scholes process

$$
S_{t}=S_{0} \exp \left(\sigma W_{t}+\left(r-\sigma^{2} / 2\right) t\right)
$$

Under P the discounted process $\widetilde{S}_{t}=S_{t} e^{-r t}$ is an exponential martingale, and the asian option

$$
F(\omega)=\left(\frac{1}{T} \int_{0}^{T} S(t) d t-K\right)^{+}
$$

which pays at maturity T the difference between the average stock price and the strike price K when this difference is positive

Use the Ito Clarck Ocone formula to find the martingale representation of F with respect to the Brownian motion W_{t}, and use the representation

$$
d W_{t}=\frac{d S_{t}}{S_{t}}-r d t
$$

to find the hedging strategy.
2. Let $f\left(t_{1}, t_{2}, t_{3}\right)=t_{1}^{2} t_{2} t_{3}, t_{i} \in[0, T]$.
(a) Write the symmetrization $\widetilde{f}\left(t_{1}, t_{2}, t_{3}\right)$.
(b) Write $I_{3}(f)$ as iterated Ito integral in the interval $[0, T]$.
(c) Write its Malliavin derivative $D_{t} I_{3}(f)$.
(d) Write its second Malliavin derivative $D_{s, t}^{2} I_{3}(f)$
(e) Let $u(t)=I_{3}(f) \sin (t)$. Is $u(t)$ adapted ?
(f) Write the Skorokhod integral $\delta(u)$ over $[0, T]$.
(g) Write the Ito Clarck Ocone martingale representation of $\delta(u)$.
3. Let $h_{n}(x)=\left(\partial^{* n} 1\right)(x)$ be the unnormalized Hermite polynomial. Remember that

$$
\frac{d}{d x} h_{n}(x)=n h_{n-1}(x) \quad \text { and } P_{t} h_{n}(x)=e^{-n t} h_{n}(x)
$$

where $\left(P_{t}: t \geq 0\right)$ is the Ornstein Uhlenbeck semigroup on $L^{2}(\mathbb{R}, \mathcal{B}(\mathbb{R}), \gamma)$.
Let also be $f \in H=L^{2}([0, T], d t)$ deterministic and consider the random variable $F=h_{n}(W(f))=h_{n}\left(\int_{0}^{T} f(s) d W(s)\right)$.
(a) Use the OU-semigroup to compute for $0 \leq t \leq T$

$$
E_{P}\left(h_{n}(W(f)) \mid \mathcal{F}_{t}^{W}\right) .
$$

Hint: when you compute the conditional expectation use the representation

$$
W(f)=W\left(f \mathbf{1}_{[0, t]}\right)+W\left(f \mathbf{1}_{[t, T]}\right)
$$

where the first Gaussian r.v. on the right is \mathcal{F}_{t}^{W} and the second Gaussian r.v. is independent from \mathcal{F}_{t}^{W}.
(b) Show by explicit computation that

$$
\begin{equation*}
D_{u} E_{P}\left(h_{n}(W(f)) \mid \mathcal{F}_{t}^{W}\right)=E_{P}\left(D_{u} h_{n}(W(f)) \mid \mathcal{F}_{t}^{W}\right) \mathbf{1}(u \leq t) \tag{0.1}
\end{equation*}
$$

Define the optional projection of the Malliavin derivative $D_{t} F$ process (which is not necessarly \mathbb{F}^{W}-adapted) as the \mathbb{F}^{W}-adapted) as the \mathbb{F}^{W}-adapted process obrained by taking the \mathcal{F}_{t}-conditional expectation of $D_{t} F$ at every time $t \in[0, T]$:

$$
{ }^{o} D_{t} F=E_{P}\left(D_{t} h_{n}(W(f)) \mid \mathcal{F}_{t}^{W}\right)=D_{t} E_{P}\left(h_{n}(W(f)) \mid \mathcal{F}_{t}^{W}\right)
$$

where we just plug-in $u=t$ in (0.1).
For a constant random variable F we define its optional projection as the \mathbb{F}^{W} adapted martingale $\left({ }^{o} F\right)_{t}=E\left(F \mid \mathcal{F}_{t}\right)$.
(c) Recall that for $f \in H=L^{2}([0, T], d t) F=W(f)=\int_{0}^{T} f(s) d W_{s}$ where on the right side we have a Wiener Ito integral. For $t \in$ $[0, T]$, we can interpret the Wiener-Ito integral

$$
W\left(f \mathbf{1}_{[0, t]}\right)=\int_{0}^{t} f(s) d W_{s}=E\left(W(f) \mid \mathcal{F}_{t}\right)
$$

as a process indexed by t, which is a Gaussian martingale in the filtration \mathbb{F}^{W}.
We also recall Ito formula: for $\varphi(x, t) \in C^{2,1}$ (twice differentiable w.r.t. x and differentiable w.r.t. $t)$ and $X_{t}=X_{0}+\int_{0}^{t} Y_{s} d W_{s}$ Ito
integral with $Y_{s}(\omega) \in L^{2}(\Omega \times[0, T], d P \times d s)$ and adapted

$$
\begin{aligned}
& \varphi\left(X_{t}, t\right)=\varphi\left(X_{0}, 0\right)+\int_{0}^{t} \frac{\partial \varphi}{\partial x}\left(X_{s}, s\right) Y_{s} d W_{s}+ \\
& \frac{1}{2} \int_{0}^{t} \frac{\partial^{2} \varphi}{\partial x^{2}}\left(X_{s}, s\right) Y_{s}^{2} d s+\int_{0}^{t} \frac{\partial \varphi}{\partial s}\left(X_{s}, s\right) d s
\end{aligned}
$$

Compute the Ito differential of

$$
\begin{equation*}
W_{t} / \sqrt{t} \tag{0.2}
\end{equation*}
$$

and the Ito differential of

$$
W\left(f \mathbf{1}_{[0, t]}\right) /\left\|f \mathbf{1}_{[0, t]}\right\|_{H}=\int_{0}^{t} f(s) d W_{s} / \sqrt{\int_{0}^{t} f(s)^{2} d s}
$$

(d) Apply Ito formula and the properties of the Hermite polynomials to represent

$$
t^{n / 2} h_{n}\left(W_{t} / \sqrt{t}\right)
$$

as Ito integral.
(e) Do the same for

$$
\begin{aligned}
& \left\|f \mathbf{1}_{[0, t]}\right\|_{H}^{n} h_{n}\left(W\left(f \mathbf{1}_{[0, t]}\right) /\left\|f \mathbf{1}_{[0, t]}\right\|_{H}\right)= \\
& \left(\int_{0}^{t} f(s)^{2} d s\right)^{n / 2} h_{n}\left(\int_{0}^{t} f(s) d W_{s} / \sqrt{\int_{0}^{t} f(s)^{2} d s}\right)
\end{aligned}
$$

(f) Show that when $\|f\|_{H}=1$ this representation coincides with the Clarck Ocone formula for $F(\omega)=h_{n}(W(f))$

$$
F=E(F)+\int_{0}^{T} E\left(D_{t} F \mid \mathcal{F}_{s}^{W}\right) d W_{s}
$$

Note that this proves the Ito Clarck Ocone formula for $F(\omega)=$ $h_{n}(W(f))$
(g) Use now the definition of Skorokhod integral and the fact the Ito and Skorokhod integral coincide for adapted integrands to show that for $F \in D^{1,2}$ the Clarck Ocone formula holds in general

$$
F-E(F)=\delta\left({ }^{o} D F\right)=\int_{0}^{T}{ }^{o} D_{t} F d W_{t}
$$

Hint. Remember that linear combinations of random variables of the form $h_{n}(W(f))$ with $\|f\|_{H}=1$ are dense in $L^{2}(\Omega, \mathcal{F}, P)$.
4. Show that

$$
E\left((F-E(F))^{2}\right)=E\left(\left\langle{ }^{o} D F, D F\right\rangle_{H}\right)=E\left(\left\langle{ }^{o} D F,{ }^{o} D F\right\rangle_{H}\right) \leq E(\langle D F, D F\rangle)
$$

Show that the operator $F: D^{1,2} \rightarrow{ }^{o}(D F)=E\left(D F \mid \mathcal{F}_{t}\right)=$ $D E\left(F \mid \mathcal{F}_{t}\right)=D^{\circ} F$ is closed, meaning that if $F_{n} \in D^{1,2}$ and $F_{n} \xrightarrow{L^{2}(\Omega ; \mathbb{R})} 0$ and ${ }^{o} D F_{n} \xrightarrow{L^{2}(\Omega ; H)} \eta$ then $\eta=0$.
(b) Show that ${ }^{\circ} D F$ can be extended from $D^{1,2}$ to all $F, L^{2}(\Omega, \mathbb{R})$, meaning that $D^{o} F$ with $D_{t} E\left(F \mid \mathcal{F}_{t}\right)$ is a well defined adapted process for all $F \in L^{2}$, and the Ito Clark Ocone formula generalizes as

$$
F-E(F)=\int_{0}^{t} D_{t}\left({ }^{o} F\right)_{t} d W_{t}=\int_{0}^{t} D_{t} E\left(F \mid \mathcal{F}_{t}\right) d W_{t}
$$

For any $F \in L^{2}(\Omega)$, (also when $F \notin \mathbb{D}^{1,2}$), we can always compute $D_{t} E\left(F \mid \mathcal{F}_{t}\right)$ as the limit in $L^{2}(\Omega ; H)$ of $E\left(D_{t} F_{n} \mid \mathcal{F}_{t}\right)$ for a smooth approximating sequence $F_{n} \in D^{1,2}$ such that $F_{n} \xrightarrow{L^{2}(\Omega, R)} F$.
5. Consider the symmetric functions $f\left(t_{1}, t_{2}\right)=t_{1} t_{2}^{2}+t_{1}^{2} t_{2}, g\left(t_{1}, t_{2}, t_{3}\right)=$ $t_{1} t_{2} t_{3}$.
(a) compute $(f \otimes g)\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)$
(b) compute its symmetrization $(f \widetilde{\otimes} g)\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)$
(c) compute the contraction $\left(f \otimes_{1} g\right)\left(t_{1}, t_{2}, t_{3}\right)$
(d) compute the symmetrized contraction $\left(f \widetilde{\otimes_{1}} g\right)\left(t_{1}, t_{2}, t_{3}\right)$
(e) Write down the iterated integral $I_{3}\left(f \otimes_{1} g\right)$
(f) Compute $D_{t} I_{3}\left(f \otimes_{1} g\right)$
(g) Compute the second Malliavin derivative $D_{s, t}^{2} I_{3}\left(f \otimes_{1} g\right)$.

