
UH Malliavin Calculus, Fall 2016, Exercises 5 (19 and 26 Octo-
ber 2016)

On the Wiener space, where H = L2([0, T ],B, dt) and Wt = W (1[0,t])
0 ≤ t ≤ T is Brownian motion. Let FA = σ(W (h1A) : h ∈ H) and Ft = F[0,t],
t ∈ [0, T ].

1. Consider the Black-Scholes process

St = S0 exp
(
σWt + (r − σ2/2)t

)
Under P the discounted process S̃t = Ste

−rt is an exponential martin-
gale, and the asian option

F (ω) =

(
1

T

∫ T

0

S(t)dt−K
)+

which pays at maturity T the difference between the average stock price
and the strike price K when this difference is positive

Use the Ito Clarck Ocone formula to find the martingale representation
of F with respect to the Brownian motion Wt, and use the representa-
tion

dWt =
dSt

St

− rdt

to find the hedging strategy.

2. Let f(t1, t2, t3) = t21t2t3, ti ∈ [0, T ].

(a) Write the symmetrization f̃(t1, t2, t3).

(b) Write I3(f) as iterated Ito integral in the interval [0, T ].

(c) Write its Malliavin derivative DtI3(f).

(d) Write its second Malliavin derivative D2
s,tI3(f)

(e) Let u(t) = I3(f) sin(t). Is u(t) adapted ?

(f) Write the Skorokhod integral δ(u) over [0, T ].

(g) Write the Ito Clarck Ocone martingale representation of δ(u).

3. Let hn(x) = (∂∗n1)(x) be the unnormalized Hermite polynomial. Re-
member that

d

dx
hn(x) = nhn−1(x) and Pthn(x) = e−nthn(x)
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where (Pt : t ≥ 0) is the Ornstein Uhlenbeck semigroup on L2(R,B(R), γ).

Let also be f ∈ H = L2([0, T ], dt) deterministic and consider the ran-

dom variable F = hn(W (f)) = hn

(∫ T

0
f(s)dW (s)

)
.

(a) Use the OU-semigroup to compute for 0 ≤ t ≤ T

EP (hn(W (f))|FW
t ) .

Hint: when you compute the conditional expectation use the repre-
sentation

W (f) = W (f1[0,t]) +W (f1[t,T ])

where the first Gaussian r.v. on the right is FW
t and the second

Gaussian r.v. is independent from FW
t .

(b) Show by explicit computation that

DuEP (hn(W (f))|FW
t ) = EP (Duhn(W (f))|FW

t )1(u ≤ t) (0.1)

Define the optional projection of the Malliavin derivative DtF
process (which is not necessarly FW -adapted) as the FW -adapted)
as the FW -adapted process obrained by taking the Ft-conditional
expectation of DtF at every time t ∈ [0, T ]:

oDtF = EP (Dthn(W (f))|FW
t ) = DtEP (hn(W (f))|FW

t )

where we just plug-in u = t in (0.1).
For a constant random variable F we define its optional projection
as the FW adapted martingale

(o
F
)
t

= E(F |Ft).

(c) Recall that for f ∈ H = L2([0, T ], dt) F = W (f) =
∫ T

0
f(s)dWs

where on the right side we have a Wiener Ito integral. For t ∈
[0, T ], we can interpret the Wiener-Ito integral

W (f1[0,t]) =

∫ t

0

f(s)dWs = E(W (f)|Ft)

as a process indexed by t, which is a Gaussian martingale in the
filtration FW .
We also recall Ito formula: for ϕ(x, t) ∈ C2,1 ( twice differentiable
w.r.t. x and differentiable w.r.t. t) and Xt = X0 +

∫ t

0
YsdWs Ito
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integral with Ys(ω) ∈ L2(Ω× [0, T ], dP × ds) and adapted

ϕ
(
Xt, t) = ϕ(X0, 0) +

∫ t

0

∂ϕ

∂x

(
Xs, s

)
YsdWs+

1

2

∫ t

0

∂2ϕ

∂x2

(
Xs, s

)
Y 2
s ds+

∫ t

0

∂ϕ

∂s

(
Xs, s

)
ds

Compute the Ito differential of

Wt/
√
t (0.2)

and the Ito differential of

W (f1[0,t])/ ‖ f1[0,t] ‖H=

∫ t

0

f(s)dWs

/√∫ t

0

f(s)2ds

(d) Apply Ito formula and the properties of the Hermite polynomials
to represent

tn/2hn
(
Wt

/√
t
)

as Ito integral.
(e) Do the same for

‖ f1[0,t] ‖nH hn
(
W (f1[0,t])

/
‖ f1[0,t] ‖H

)
=(∫ t

0

f(s)2ds

)n/2

hn

(∫ t

0

f(s)dWs

/√∫ t

0

f(s)2ds

)
(f) Show that when ‖ f ‖H= 1 this representation coincides with the

Clarck Ocone formula for F (ω) = hn(W (f))

F = E(F ) +

∫ T

0

E(DtF |FW
s )dWs

Note that this proves the Ito Clarck Ocone formula for F (ω) =
hn(W (f))

(g) Use now the definition of Skorokhod integral and the fact the Ito
and Skorokhod integral coincide for adapted integrands to show
that for F ∈ D1,2 the Clarck Ocone formula holds in general

F − E(F ) = δ(oDF ) =

∫ T

0

oDtFdWt .

Hint. Remember that linear combinations of random variables of
the form hn(W (f)) with ‖ f ‖H= 1 are dense in L2(Ω,F , P ).
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4. Show that

E
(
(F − E(F ))2

)
= E

(
〈oDF,DF 〉H

)
= E

(
〈oDF, oDF 〉H

)
≤ E

(
〈DF,DF 〉

)
Show that the operator F : D1,2 → o(DF ) = E(DF |Ft) =
DE(F |Ft) = DoF is closed, meaning that if Fn ∈ D1,2 and

Fn
L2(Ω;R)−→ 0 and oDFn

L2(Ω;H)−→ η then η = 0.

(a)(b) Show that oDF can be extended fromD1,2 to all F , L2(Ω,R), mea-
ning that DoF with DtE(F |Ft) is a well defined adapted process
for all F ∈ L2, and the Ito Clark Ocone formula generalizes as

F − E(F ) =

∫ t

0

Dt

(
oF
)
t
dWt =

∫ t

0

DtE(F |Ft)dWt

For any F ∈ L2(Ω), ( also when F 6∈ D1,2), we can always compute
DtE(F |Ft) as the limit in L2(Ω;H) of E(DtFn|Ft) for a smooth

approximating sequence Fn ∈ D1,2 such that Fn
L2(Ω,R)−→ F .

5. Consider the symmetric functions f(t1, t2) = t1t
2
2 + t21t2, g(t1, t2, t3) =

t1t2t3.

(a) compute (f ⊗ g)(t1, t2, t3, t4, t5)

(b) compute its symmetrization (f⊗̃g)(t1, t2, t3, t4, t5)

(c) compute the contraction (f ⊗1 g)(t1, t2, t3)

(d) compute the symmetrized contraction (f⊗̃1g)(t1, t2, t3)

(e) Write down the iterated integral I3(f ⊗1 g)

(f) Compute DtI3(f ⊗1 g)

(g) Compute the second Malliavin derivative D2
s,tI3(f ⊗1 g).
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