UH Malliavin Calculus, Fall 2016, Exercises 4 (5,12 October 2016)

1. Show that the Malliavin derivative defines for simple random variable

$$F = f(X(h_1), \dots, X(h_n)) \in \mathcal{S}$$

as

$$DF = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} f(X(h_1), \dots, X(h_n)) h_i \in L^2(\Omega, H)$$

does not depend on the representation of F,

Note that the representation of $F \in \mathcal{S}$ is not unique, it could be written as

$$F = \varphi(X(\eta_1), \dots, X(\eta_m))$$

for some other $m \eta_i$ and φ .

2. Let $\{\xi_n : n \in \mathbb{N}\}$ be a sequence of Gaussian random variables, $\xi_n \sim \mathcal{N}(\mu_n, \sigma_n)$ such that $\xi_n \xrightarrow{law} \xi$ with respect to the convergence in distribution, meaning that the characteristic function converges pointwise

$$\varphi_{\xi_n}(t) := E\left(\exp(it\xi_n)\right) = \exp\left(it\mu_n - t^2\sigma_n^2/2\right) \longrightarrow \varphi_{\xi}(t) = E\left(\exp(it\xi) \quad \forall t$$

where $i = \sqrt{(-1)}$ is the imaginary unit. Show that ξ is either Gaussian or deterministic.

Hint: show that μ_n and σ_n have limits.

3. For $g \in H$ we consider the shifted process $(X+g)(h) = X(h) + \langle g, h \rangle_H$, $\forall h \in H$, which are jointly Gaussian, with mean $\langle g, h \rangle_H$ and covariance $E((X+g)(h)(X+g)(h')) = E(X(h)X(h')) = \langle h, h' \rangle_H$.

We consider the shift operator $T_g: \mathcal{S} \longrightarrow \mathcal{S}$ such that

$$F = f(X(h_1), \dots, X(h_n)) \mapsto T_g F = f(X(h_1) + \langle g, h_1 \rangle_H, \dots, X(h_n) + \langle g, h_n \rangle_H)$$

Show there is a probability measure $P_g \sim P$ (the shifted Gaussian measure) such that if $F \in S$

$$E_P(T_gF) = E_{P_g}(F) = E_P(FZ), \quad Z = \frac{dP_g}{dP} = \exp(X(g) - \langle g, g \rangle_H/2)$$

Hint. Show that Z > 0 P a.s. and it is a Radon Nikodym derivative with $E_P(Z) = 1$.

4. Let $\{ e_i : i \in \mathbb{N} \}$ a complete orthonormal system of the separable Hilbert space, $\{ \xi_i(\omega) : i \in \mathbb{N} \}$ a sequence of i.i.d. standard Gaussian variables defines on (Ω, \mathcal{F}, P) , and let

$$X(h) = \sum_{i=1}^{\infty} \langle h, e_i \rangle_H \xi_i(\omega)$$

be the isonormal Gaussian process. Show that the shifted isonormal process has the representation

$$(X+g)(h)\sum_{i=1}^{\infty} \left(\langle h, e_i \rangle_H \xi_i(\omega) + \langle h, g \rangle_H \right)$$

as a limit in $\boldsymbol{L}^2(\Omega,\mathbb{R})$

5. Show that T_g is closed in $L^2(\Omega, \mathcal{F}, P)$, and it has an unique extension $T_g : \text{Dom}(T_g) \to L^2(\Omega)$.

We consider now a fix direction g, show for $F \in S$ the directional derivative exists

$$D_g F := \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} (T_{\varepsilon g} F - F) = \langle DF, g \rangle$$

where we take the limit in $L^2(\Omega, \mathbb{R})$. Show that D_g is a closed operator which is extended uniquely to an operator defined on a closed subspace $\text{Dom}(D_g) \supseteq D^{1,2}$.

6. Compute the divergence integrals with respect to the Brownian motion W, where $H = L^2([0, T], dt)$, and the isonormal Gaussian process is

$$W(h) = \int_0^t h(s)W(ds)$$

is the Wiener integral

(a)
$$\int W(t)\delta W(t)$$
 (c) $\int W(t_0)^2 \delta W(t)$ (d) $\int_0^T \exp(W(T))\delta W(t)$
(b) $\int W(t)^2 \delta W(t)$ with fixed t_0