
UH Malliavin Calculus, Fall 2016, Exercises 1-2 (14 and 21.9
2016)

1. Let G(ω) ∼ N (0, 1) be a standard Gaussian random variable, with
probability density

φ(x) =
1√
2π

exp

(
−x

2

2

)
, x ∈ R

Since we know that EP
(

exp(λG2/2)

)
<∞ ∀λ < 1, and when 0 < λ <

1, for any polynomial p(x), there are constants C1, C2 such that

|p(x)| ≤ C1 + C2 exp(λx2/2)

which implies that EP (|G|p) < ∞ and G ∈ Lp(P ) for all exponents
p > 0. Similarly all exponential moments EP

(
exp(tG)

)
= exp(t

2
/2)

are finite ∀t ∈ R. Note also that the standard Gaussian distribution is
symmetric around the origin, with φ(x) = φ(−x).

(a) Use symmetry to show that ∀n ∈ N we have EP (G2n+1) = 0 for
all the odd moments.

(b) Compute EP (G2).
Hint You can use the Gaussian integration by parts formula
EP (f(G)G) = EP (f ′(G)) after checking the integrability condi-
tion. Equivalently you can use the property of the standard Gaus-
sian density ∂xφ(x) = −φ(x)x and use the usual integration by
parts formula.

(c) Use induction to compute the even moments of the standard Gaus-
sian EP (G2n), for n ∈ N.

2. For t ∈ R compute the expectations:

(a) EP
(
G1(G > t)

)
(b) EP

(
G1(G ≤ t)

)
(c) EP

(
G21(G > t)

)
(d) EP

(
G21(G ≤ t)

)
(e) EP

(
G31(G > t)

)
(f) EP

(
G31(G ≤ t)

)
(g) EP

(
G41(G > t)

)
(h) EP

(
G41(G ≤ t)

)
Hints: Show you can use the Gaussian integration by part formula
EP (f(G)G) = EP (f ′(G)) with f(x) = 1(x > t). In this case f ′(x) =

1



δt(x) = δ0(x − t) is not a function but a generalized function (a di-
stribution in analysis language), the Dirac-delta function at t, with the
defining property

g(t) =

∫
R
g(x)δt(x)dx =

∫
R
g(x)δ0(x− t)dx =

∫
R
g(y + t)δ0(y)dy

for any continuous test function g with compact support. From the
probabilistic point of view the measure µ(dx) = δt(x)dx is simply the
probability measure of a deterministic random variable concentrated in
the singleton {t}.
In order show that the integration by parts formula is correct also in
this case, approximate the indicator f(x) = 1(x > t) by the sequence
fn(x) =

(
(x − t)+n) ∧ 1 which satisfies 0 ≤ fn(x) ≤ f(x) ≤ 1 ∀x, and

it is piecewise linear with derivative f ′n(x) = n1
(
t < x ≤ t+ 1/n

)
.

Apply the Gaussian integration by parts to fn(x) and use the domina-
ted convergence Theorem to take limits.

3. Let H ⊂ L2(Ω,F , P ) be a closed (with respect to the L2 norm) subs-
pace of random variables, and X ∈ L2(P ). There exists an element
Y ∈ H which minimizing the L2 distance from X among all H ele-
ments.

EP
(
(Y −X)2

)
≤ EP

(
(V −X)2

)
∀V ∈ H

It is also true that (Y − X) ⊥ H, ( (X − Y ) is orthogonal to H ),
equivalently

EP (Y V ) = EP (XV ) ∀V ∈ H

We denote ΠHX = Y as the orthogonal projection of X into the subs-
pace H.

For example if G ⊆ F is a sub σ-algebra, H = L2(Ω,G, P ) is a clo-
sed subspace of L2(Ω,G, P ) and in this case ΠHX coincides with the
conditional expectation EP (X|G).

(a) Show that the L2-projection ΠH is a linear operator: when X,Z ∈
L2(P ), a, b ∈ R,

ΠH(aX + bZ) = aΠHX + bΠHZ,

(b) Show that the L2 projection is idempotent : (ΠH)2 = ΠH), mea-
ning that when Y ∈ H, ΠHY = Y ,
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(c) Show that the projection does not increase the L2 norm:

‖ X ‖L2(P )≥‖ ΠHX ‖L2(P )

These properties characterize projection operators.
The Next exercises are about combining the idea of taking
L2(P )-projections to the linear span subspace of L2(P ) random
variable, together with the integration by parts formula for
Gaussian, Poisson, and Bernoulli variables.

4. Let G(ω) ∼ N(0, 1) be a standard Gaussian variable with probability
density φ(y) = (2π)−1/2 exp

(
−y2/2

)
, and let f(x) be a differentiable

function with EP (f(G)2) <∞ and EP (|f ′(G)|) <∞.

(a) Use the Gaussian integration by parts formula to show that

f̂(G) = EP (f(G)) + EP (f ′(G))G(ω)

is the best linear approximation of f(G) based in the closed li-
near span of { 1, G(ω)} in least square sense, meaning that â =

EP (f(G)) and b̂ = EP (f ′(G)) are minimizing the mean square
error

EP (
{
f(G)− (a+ bG)

}2)
, a, b ∈ R

(b) Now we consider the same linear approximation in the multivariate
case. where we use the following extension of the linear predictor
formula from Example 9.1.1. in the lecture notes:
When X(ω) = (X1(ω), . . . , XT (ω)) ∈ L2(Ω,F , P ), then the fol-
lowing multivariate formula holds: for Y = (Y1, . . . , Yd) is another
random variable in L2(P ),

Ŷ = EP (Y ) + (X − EP (X))Cov(Y, Y )−1Cov(X, Y )

where M−1 denoted the inverse of a matrix M and Cov(X, Y )ij =
E(XiYj)− E(Xi)E(Xj) is the covariance between Xi and Yj,
and Ŷi is the L2(P )-projection of Yi to the linear span of {1, X1, . . . , Xd}.
Let G(ω) = (G1(ω), . . . , GT (ω)) ∈ RT where the coordinates
Gt(ω) are independent and identically distributed standard Gaus-
sian random variables. Let f : RT → R be differentiable with
EP
(
f(G1, . . . Gn)2

)
<∞ and

EP

(∣∣∣∣ ∂∂xtf(G1, . . . , GT )

∣∣∣∣) <∞
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Show that

f̂(G1, . . . , GT ) = EP (f(G1, . . . , GT )) +
T∑
t=1

EP

(
∂

∂xt
f(G1, . . . , GT )

)
Gt

is the best linear approximation of f(G1, . . . , GT ) in the linear
span of {1, G1, . . . , GT}. with coefficients minimizing the mean
square error

EP

({
f(G1, . . . , GT )−

(
c0 +

T∑
t=1

ctGt

)}2)
(c) Next we consider the correlated case: let A = (Ast) be a non-

singular T × T matrix, G = (G1, . . . , GT ) with i.i.d. standard
Gaussian coordinates as before and let X = (X1, . . . , XT ) = AG>

with coordinates

Xs =
T∑
t=1

AstGt

We have seen that the random vector X is Gaussian with zero
mean and covariance matrix Σ = AA>. Let f(x1, . . . , xT ) be a
differentiable function with

EP (f(X1, . . . , XT )2) <∞

and

EP

(∣∣∣∣ ∂∂xtf(X1, . . . , XT )

∣∣∣∣) <∞

Compute the coefficients of the best linear approximation f̂(X1, . . . , XT )
of f(X1, . . . , XT ) in the linear span of {1, X1, . . . , XT} minimizing
the mean square error

EP

({
f(X1, . . . , XT )−

(
c0 +

T∑
t=1

ctXt

)}2)
5. Let N(ω) be a Poisson(λ) distributed random variable with parameter
λ > 0. where

Pλ
(
N = k

)
= exp(−λ)

λk

k!
for k ∈ N .

and (f(k) : k ∈ N) a sequence with E(f(N)2) <∞.
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(a) Prove the Stein equation or integration by parts formula for Poisson-
λ random variables:

Eλ
(
f(N)N

)
= λEλ

(
f(N + 1)

)
(b) Use the integration by parts formula for Poisson random variable

to compute the first Poisson moments. Eλ(N) = λ, Eλ(N2) =
λ2 + λ.

(c) Show that

f̂(N) = Eλ(f(N)) + Eλ(f(N + 1)− f(N))(N − λ)

is the best linear estimator of f(N) depending on N on the closed
linear span of {1, N(ω)}, with coefficients minimizing the mean
square error

EP (
{
f(N)− (a+ bN)

}2)
(d) Let now Let N(ω) = (N1(ω), . . . , NT (ω)) ∈ NT where the coordi-

nates are Nt(ω) are independent and Poisson(λt) distributed for
t = 1, . . . , T , respectively, with λt > 0 (possibly different).
Let f : NT → [0,+∞) be a function with EP (f(N1, . . . , NT )2) <
∞.
Show that

f̂(N1, . . . , NT ) = EP (f(N1, . . . , NT ))+

T∑
t=1

EP

(
f(N1, . . . , Nt−1, 1 +Nt, Nt+1 . . . , NT )− f(N1, . . . , Nt−1, Nt, Nt+1 . . . , , NT )

)(
Nt − λt)

is the best linear approximation of f(N1, . . . , NT ) in the linear
span of {1, N1, . . . , NT} with coefficients ct ∈ R minimizing the
mean square error

EP

({
f(N1, . . . , NT )−

(
c0 +

T∑
t=1

ctNt

)}2)

6. Let G(ω) be a standard Gaussian random variables.

For f(x) differentiable with derivative satisfying EP (|∂f(G)| ) < ∞,
we define Define the adjoint operator f 7→ ∂∗f with ∂∗f(x) = xf(x)−
∂f(x).
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(a) Use the Gaussian integration by parts formula together with the
product rule of calculus

∂(fh) = f∂h+ h∂f

to prove the following extension of the Gaussian integration by
parts formula: when EP (f(G)2) < ∞ and EP (∂f(G)2) < ∞, and
for another differantiable h with EP (∂h(G)2) <∞,

EP (h(G)∂f(G)) = EP (f(G)∂∗h(G))

∂∗f(x) := xf(x)− ∂f(x)

is the adjoint of the derivative operator ∂ in the space L2(R,F , φ(x)dx),
where the integration measure is the standard Gaussian distribu-
tion on R.

(b) We define the (unnormalized) Hermite polynomials as h0(x) = 1,
and by induction hn(x) = (∂∗n1)(x) = ∂∗nhn−1(x).
Compute the first five hn(x) Hermite polynomials for n = 1, 2, 3, 4, 5.

(c) Show that E(hn(G)) = 0

(d) Show that E(hn(G), hm(G)) = n!δnm and in particular the random
variables hn(G) and hm(G) are orthogonal in L2(Ω,F , P ) Hint: use
extended Gaussian integration by parts, and that ∂∗ is the adjoint
of the derivative in L2(R,F , φ(x)dx).

7. Let f(x) be a function with n derivatives ∂nf(x), such that EP (∂kf(G)) ∈
L2(Ω,F , P ) for k = 0, 1, 2, . . . , n.
Show that

f̂(G) = EP (G) +
n∑
k=1

EP (∂kf(G))

k!
hk(G) = EP (G) +

n∑
k=1

EP (f(G)hk(G))

k!
hk(G)

is the best polynomial approximation of f(G) in the linear span of
{h0(G) = 1, h1(G) = G, . . . , hn(G)} with coefficients minimizing the
least square error

EP

({
f(G)−

( n∑
k=0

ckhn(G)

)}2)
Similar polynomial approximations can be computed in the multiva-
riate case, and also for Poisson random variables, in that case using
some polynomials other than of Hermite polynomials, and also in the
combined case where the linear span contains the polynomials of both
Gaussian and Poisson random variables.
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8. We compute linear projections with Bernoulli random variables. Let
X(ω) be a binary random variable with

P (X = 1) = 1− P (X = 0) = p

and p in [0, 1].

(a) Show that then best linear approximation of f(X) for f : {0, 1} →
R in the linear span of {1, X1(ω)} in mean square sense is given
by

f̂(X) = Ep(f(X)) + (f(1)− f(0))(X − p)

where EP (X) = EP (X2) = p.

(b) Actually in this case the approximation is exact: check that f̂(X) =
f(X) !

(c) For X1(ω), . . . , XT (ω) independent random variables with

P (Xt = 1) = 1− P (Xt = 0) = pt

and pt in [0, 1], and f : {0, 1}T → R, show that best linear ap-
proximation of f(X) in the linear span of {1, X1(ω), . . . , XT (ω)}
in mean square sense is given

f̂(X1, . . . , XT ) = EP (f(X))+

T∑
t=1

EP

(
f(X1, . . . , Xt−1, 1, Xt+1, . . . Xtn)− f(X1, . . . , Xt−1, 0, Xt+1, . . . Xtn)

)
(Xt(ω)− pt)
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