INTRODUCTION TO MATHEMATICAL BIOLOGY

HOMEWORK SOLUTIONS

November 21, 2016

Exercise 8.1

(a) At the stable age distribution, after one year we know that (1) every class grows of a factor λ, (2) for $i>1$, individuals in class i are those survived from class $i-1$. Hence, for any class $i>1$ we can write

$$
u_{i}=\frac{1}{\lambda} P_{i-1} u_{i-1}=\frac{1}{\lambda^{2}} P_{i-1} P_{i-2} u_{i-2}=\cdots=\frac{1}{\lambda^{i}} l_{i} u_{1}
$$

Hence, $u_{i}=c l_{i} / \lambda^{i}$ for $c=u_{1}$.
(b) Since v is the left eigenvector and from the special structure of the Leslie matrix,

$$
v_{i}=\frac{1}{\lambda}\left(\mathbf{v}^{T} \mathbf{A}\right)_{i}=\frac{1}{\lambda}\left(F_{i} v_{1}+P_{i} v_{i+1}\right)
$$

(i) Let j such that $F_{i}=0$ for all $j \leq i \leq n$. Thanks to (b),

$$
v_{i}=\frac{1}{\lambda}\left(F_{i} v_{1}+P_{i} v_{i+1}\right)=\frac{1}{\lambda}\left(P_{i} v_{i+1}\right)=\frac{1}{\lambda^{2}}\left(P_{i+1} v_{i+2}\right)=\cdots=\frac{1}{\lambda^{(n-i+1)}}\left(P_{n} v_{n+1}\right)=0
$$

since $P_{n}=0$.
(ii) Assume $\lambda \geq 1$. Using (a) and the fact that $P_{i}<1$ for all i, for all $i>1$ we can write

$$
x_{i}=c \frac{l_{i}}{\lambda^{i}}=c \frac{P_{i}}{\lambda} \frac{l_{i-1}}{\lambda^{i-1}}<c \frac{l_{i-1}}{\lambda^{i-1}}=x_{i-1}
$$

(iii) Let $1 \leq i<k$. Then we use (b)

$$
v_{i}=\frac{1}{\lambda}\left(F_{i} v_{1}+P_{i} v_{i+1}\right)=\frac{P_{i}}{\lambda} v_{i+1}<v_{i+1} .
$$

Exercise 8.2

$$
\sum_{i, j} e_{i j}=\frac{1}{\lambda} \sum_{i, j} v_{i} u_{j} a_{i j}=\frac{1}{\lambda} \mathbf{v}^{T} \mathbf{A} \mathbf{u}=1
$$

Exercise 8.3

The projection matrix of the turtles population is

$$
\mathbf{A}=\left(\begin{array}{ccc}
0 & 0 & 60 \\
0.6 & 0.7 & 0 \\
0 & 0.001 & 0.8
\end{array}\right)
$$

with leading eigenvalue $\lambda \approx 0.95$.
To compute elasticities, we (numerically) compute the left and right eigenvectors normalized such that $\mathbf{v}^{T} \mathbf{u}=1$:

$$
\mathbf{u} \approx\left(\begin{array}{c}
35.8494 \\
85.7315 \\
0.5682
\end{array}\right) \quad \mathbf{v} \approx\left(\begin{array}{c}
0.0025 \\
0.0040 \\
1.0000
\end{array}\right)
$$

Now we can compute the elasticities corresponding to the effect of increasing fecundity, a_{13}, and the effect of increasing adult survival, a_{33}

$$
\begin{aligned}
& e_{13}=\frac{1}{\lambda} v_{1} u_{3} a_{13} \approx 0.0897 \\
& e_{33}=\frac{1}{\lambda} v_{3} u_{3} a_{33} \approx 0.4785
\end{aligned}
$$

Hence increasing adult survival has a much stronger relative effect in the conservation of the turtles population. Notice that if $A_{i j}$ is the cost of an the 1% increase of the entry $a_{i j}$, the aim is to minimize the quantity A / e.

Exercise 8.4

Let S and V be the number of seedlings and of propagules produced by an adult plant, respectively. Let s_{1}, s_{2}, s_{3} be the survival probability of seedlings, juveniles and adults, respectively, from one census to the next. Let p be the probability of a juvenile plant to grow adult, if it survived.
(a) $\mathbf{A}=\mathbf{F}+\mathbf{T}$ where

$$
\mathbf{F}=\left(\begin{array}{ccc}
0 & 0 & S \\
0 & 0 & V \\
0 & 0 & 0
\end{array}\right) \quad \mathbf{T}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
s_{1} & s_{2}(1-p) & 0 \\
0 & s_{2} p & s_{3}
\end{array}\right)
$$

The next generation matrix \mathbf{K} is defined by

$$
\mathbf{K}=\mathbf{F}(I-\mathbf{T})^{-1}
$$

Let $q=p s_{2} /\left(1-s_{2}(1-p)\right)$. Then we can write

$$
(I-\mathbf{T})^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{s_{1}}{1-s_{2}(1-p)} & \frac{1}{1-s_{2}(1-p)} & 0 \\
\frac{s_{1} q}{1-s_{3}} & \frac{q}{1-s_{3}} & \frac{1}{1-s_{3}}
\end{array}\right)
$$

For our purposes, we only consider the block \mathbf{K}_{1} corresponding to the two state-at-births (seedlings and juveniles):

$$
\mathbf{K}_{1}=\left(\begin{array}{lll}
0 & 0 & S \\
0 & 0 & V
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{s_{1}} & \frac{1}{1-s_{2}(1-p)} \\
\frac{s_{q} q}{1-s_{3}} & \frac{1}{1-s_{2}(1-p)} \\
1-s_{3}
\end{array}\right)=\frac{q}{1-s_{3}}\left(\begin{array}{ll}
S s_{1} & S \\
V s_{1} & V
\end{array}\right)
$$

with corresponding eigenvalues $\lambda=0$ and $\lambda=\frac{\left(V+S s_{1}\right) q}{1-s_{3}}>0$. Hence,

$$
R_{0}^{(a)}=\frac{\left(V+S s_{1}\right) q}{1-s_{3}}>0 .
$$

(b) Consider the only state-at-birth to be the the seedling state (V is not too large). We write $\mathbf{A}=\mathbf{F}+\mathbf{T}$ with

$$
\mathbf{F}=\left(\begin{array}{lll}
0 & 0 & S \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \mathbf{T}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
s_{1} & s_{2}(1-p) & V \\
0 & s_{2} p & s_{3}
\end{array}\right)
$$

In particular, for \mathbf{T} to be an admissible transition matrix it is sufficient to assume that $V+s_{3} \leq 1$. We compute the inverse

$$
(I-\mathbf{T})^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{s_{1}}{1-s_{2}(1-p)}-\frac{s_{1} q}{1-s_{3}-q V} & \frac{1}{1-s_{2}(1-p)}-\frac{q}{1-s_{3}-q V} & -\frac{s_{1}}{1-s_{3}-q V} \\
\frac{1-s_{3}-q V}{1-s_{3}-q V} & \frac{1}{1-s_{3}-q V}
\end{array}\right)
$$

R_{0} is the number obtain by multiplying the first row of \mathbf{F} times the first column of $(I-\mathbf{T})^{-1}$, hence

$$
R_{0}^{(b)}=\frac{q S s_{1}}{1-s_{3}-q V}
$$

(c)

$$
R_{0}^{(a)} \gtreqless 1 \Leftrightarrow q V+q S s_{1} \gtreqless 1-s_{3} \Leftrightarrow \frac{q S s_{1}}{1-s_{3}-q V} \gtreqless 1 \Leftrightarrow R_{0}^{(b)} \gtreqless 1
$$

