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Exercise 7.1

(a) Divide the population in two states according to the habitats. Then, the projection
matrix is

A =

(
(1−m)ρ1 smρ2
smρ1 (1−m)ρ2

)
Notice that A = MF where M is the dispersal matrix and F is the reproduction matrix:

M =

(
(1−m) sm
sm (1−m)

)
, F =

(
ρ1 0
0 ρ2

)
(b) In the limit s→ 0, the projection matrix becomes

A0 =

(
(1−m)ρ1 0

0 (1−m)ρ2

)
Hence, the population is viable if and only if

max
i=1,2

(1−m)ρi ≥ 1.

Exercise 7.2

Let S and V be the number of seedlings and of propagules produced by an adult plant,
respectively. Let s1, s2, s3 be the survival probability of seedlings, juveniles and adults,
respectively, from one census to the next. Let p be the probability of a juvenile plant to
grow adult, if it survived.

The projection matrix corresponding to the states (seedlings, intermediate, adult) is

A =

 0 0 S
s1 s2(1− p) V
0 s2p s3


Exercise 7.3

Consider the Leslie matrix

L =

(
0.6 1.1
0.5 0

)
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The eigenvalues of L are

λ1 = 1.1, λ2 = −0.5

with corresponding eigenvectors

u1 =

(
1

5/11

)
u2 =

(
1
−1

)
Denote

U =
(
u1 u2

)
=

(
1 1

5/11 −1

)
Then, we can write

L = U−1

(
1.1 0
0 −0.5

)
U

and hence

L10 = U−1

(
1.1 0
0 −0.5

)10

U = U−1

(
1.110 0
0 0.510

)
U

Since 0.510 � 1, the matrix L10 is almost singular. This happens because in the long term
the structure of the population tends to align along the eigenvector corresponding to the
leading eigenvalue.

Exercise 7.4
Graph Example Irreducible Primitive

1 age structure with pre- and post-reproductive state no no
2 dispersal between two patches yes yes
3 growth and dispersal yes no

4 three patches and dispersal cloud yes yes(where the individual stay for one full year)

Notice that the first example can be made irreducible (and hence primitive), by elimi-
nating the last state.

Exercise 7.5

(a) Let vT be the leading left eigenvector, i.e.,

vTA = λvT ,

where λ is the leading eigenvalue of A. Let vj be the reproductive value of an individual
in class j and let ej be the j-th element of the canonical basis. Then,

vj = vTej =
1

λ
(vTA)ej =

1

λ
vT (Aej) =

1

λ

n∑
i=1

vi(Aej)i

and notice that the vector Aej contains exactly the number of descendants of an individual
in class j the next year.
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The term 1/λ takes into account the fact that the descendants next year have one
year less for reproducing: their effective contribution is given by their reproductive value
vi (which is relative to the initial time) divided by λ, which is the growth factor of the
population in one year.

(b) Let v be the vector of reproductive values (i.e., the left eigenvector corresponding
to the leading eigenvalue), let u denote the dominant right eigenvector, which describes
the asymptotic population structure, and let U be the matrix of right eigenvectors. At
the stable state distribution, Au = λu, and uj denotes the fraction of individuals of the
population which are in state j. Hence, the expected reproductive value v is

v =
n∑

j=1

vjuj = vTu = 1,

from the standard normalization.
(c) As before, the probability of picking an individual in state j is uj . Next year,

the descendants of this individuals are Aej , and their reproductive values are given by
the vector vT . Hence, the expected reproductive value ṽ of the descendant of a random
individual is

ṽ =
n∑

j=1

vT (Aej)uj = vTAu = λ.
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