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Exercise 6.1

(a) The condition for a period doubling bifurcation is F ′(N̂) = −1, hence the condition
cannot be fulfilled in an undercompensating model, for which F ′(N) > 0 for all N .

(b) Let Nt+1 = F (Nt) and consider the three discrete-time models considered in the
lectures:

• Ricker:
F (N) = bNe−aN , F ′(N) = be−aN (1− aN)

• Beverton–Holt:
F (N) =

λN

1 + αN
, F ′(N) =

λ

(1 + αN)2

• Skellam:
F (N) = 1− e−BN , F ′(N) = Be−BN

Therefore the undercompensating models are the beverton-Holt and the Skellam model.
(c) Consider the Skellam model. The function F (N) is increasing, such that F (0) = 0,

F ′(0) = B, limN→∞ F
′(N) = 0, and F ′′(N) = −B2e−BN is negative, so F ′ is decreasing

monotonically. Hence, if B > 1 there exists a unique positive intersection between the
curve F (N) and the line g(N) = N . If B ≤ 1, there is no positive intersection (but
there is a unique intersection with N < 0, because limN→−∞ F

′(N) = ∞). When B > 1,
the stability of the positive equilibrium N̂ is easy to verify graphically with the cobweb
method. In fact, at the intersection of the two curves we have

0 < F ′(N̂) < 1.

A similar reasoning applies to the Beverton-Holt model.
The properties of uniqueness and stability of the nontrivial equilibrium do not hold for

any undercompensating model. For instance, consider a sigmoid function such that, for
certain parameter values, there exist two nontrivial equilibria, one unstable and one stable
(see Figure 1).

Exercise 6.2

Consider the Ricker model
Nt+1 = bNte

−aNt . (1)
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Figure 1: Sigmoid function with two positive equilibria (one unstable and one stable).

The trivial state N̂0 = 0 is always an equilibrium of the equation. The nontrivial equilib-
rium N̂ satisfies

1 = be−aN̂ ⇔ N̂ =
1

a
log b

and hence it exists positive if and only if b > 1.
For stability, we have

F ′(N) = be−aN (1− aN). (2)

By plugging the value of the equilibria into (2), we obtain

F ′(0) = b, F ′(N̂) = 1− log b.

Hence the trivial equilibrium is asymptotically stable if b < 1 and a transcritical bifurcation
happens at b = 1. The positive equilibrium N̂ is asymptotically stable if

|1− log b| < 1⇔ 1 < b < e2.

At b = e2, F ′(N̂) = −1 and the nontrivial equilibrium loses stability in favor of a 2-cycle.
The bifurcation diagram of the Ricker map is represented in Figure 2.

Exercise 6.3

Consider the within-year dynamics for adults n(τ) and juveniles x(τ)

dn(τ)

dτ
= −δ(τ)n(τ) n(0) = Nt

dx(τ)

dτ
= −[µ(τ) + cn(τ)]x(τ) x(0) = BNt

for 0 ≤ τ ≤ 1. The solution of the within-year dynamics is

n(τ) = Nte
−

∫ τ
0 δ(s)ds (3)

x(τ) = BNte
−

∫ τ
0 (µ(s)+cn(s))ds (4)

(a) Define the yearly averages

δ̄ :=

∫ 1

0
δ(s)ds, µ̄ :=

∫ 1

0
µ(s)ds.
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Figure 2: Bifurcation diagram of the Ricker map (1), for a = 1.

The map F reads

Nt+1 = F (Nt) = n(1) + x(1) = Nt

[
e−δ̄ +Be−µ̄−c

∫ 1
0 n(τ)dτ

]
where n(τ) is given by (3).

(b) The model reduces to the Ricker map if δ̄ =∞ and∫ 1

0
e−

∫ s
0 δ(σ)dσds > 0.

For instance, we can take δ(s) < ∞ for s ∈ [0, τ̄ ], δ(s) = ∞ for s > τ̄ , for a fixed value
0 < τ̄ < 1.

(c) If δ and µ are constant,

Nt+1 = Nt

[
e−δ +Be−µe−

c
δ

(1−e−δ)Nt
]
.

The equilibrium N̂ > 0 satisfies

e−δ +Be−µe−
c
δ

(1−e−δ)N̂ = 1

N̂ =
δ

c(1− e−δ)
log

Be−µ

1− e−δ

and N̂ > 0 if and only if Be−µ + e−δ > 1 (in particular, the left-hand side Be−µ + e−δ is
the annual growth rate at low density, i.e., the number of offspring surviving one year with
no cannibalism plus number of parent surviving, per initial parent).

For the stability, we look at

F ′(N̂) = 1 + N̂
[
− c
δ

(1− e−δ)Be−µe−
c
δ

(1−e−δ)N̂
]

= 1− (1− e−δ) log
Be−µ

1− e−δ
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Notice that F ′(N̂) < 1 always, and hence N̂ is stable if and only if F ′(N̂) > −1, if and
only if

g(δ) := (1− e−δ) log
Be−µ

1− e−δ
< 2.

Depending on the values of B and µ, increasing δ may destabilize the equilibrium (for in-
stance, you can see this by studying the relative position of the curves f(δ) = log(Be−µ/(1−
e−δ)) and g(δ) = 2/(1− e−δ)).

Exercise 6.4

Consider the discrete-time population model with k strains

N
(i)
t+1 = λ̃if(Nt)N

(i)
t , i = 1, . . . , k,

Assume the population exhibits cycles of length T ∈ N, T ≥ 1 (where T = 1 corresponds
to an equilibrium state). Then, for all strains i which are not extinct, it holds N (i)

t+T = N
(i)
t

and

N
(i)
t+T =

T−1∏
j=0

λ̃if(Nt+j)

N
(i)
t = λ̃Ti N

(i)
t

T−1∏
j=0

f(Nt+j),

from which we conclude that

λ̃i =

T−1∏
j=0

f(Nt+j)

−T .
Hence, all the strains that are present in the cyclic/equilibrium population have the same
value of λ̃i. In a generic case, the factors λ̃i are different for any strain, hence generically
there is only one strain present in the system.

Exercise 6.5

Consider the discrete-time model

Nt+1 = λ(n,Nt)Nt

with
λ(n,N) = [ns+ p(n)]f(N),

where p is a decreasing function of n ∈ R, 0 ≤ n ≤ nm. The optimal strategy n∗ is such
that (n∗, N̂(n∗)) is a maximum of λ:

∂λ

∂n

∣∣∣
(n∗,N̂(n∗))

= [s+ p′(n∗)]f(N) = 0⇔ p′(n∗) = −s (5)

and
∂2λ

∂n2

∣∣∣
(n∗,N̂(n∗))

= p′′(n∗) < 0 (6)
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If there exists n∗ < nm such that (5) and (6) are satisfied, then the optimal population
is an iteroparous population such that p(n∗) > 0.

Otherwise, assume (5) is satisfied but p′′(n∗) ≥ 0. In this case the stationary point n∗

is a local minimum and the maximal value of λ is attained at n = 0 or n = nm, depending
on the shape of p.

Finally, if (5) is not satisfied then we distinguish two cases:

• p′(n) < −s for all n: then the optimal value of λ is attained at n∗ = 0 (no reproduc-
tion: extinction of the population);

• −s ≤ p′(n) < 0 for all n: then the optimal value of λ is attained at n∗ = nm (i.e.,
you should invest everything in reproduction and then die, semelparity);

In conclusion: with convex p, we cannot get iteroparity; hence a simple qualitative
property of the trade-off (concavity) is necessary for iteroparity. Semelparity (n∗ = nm)
results if p is convex or s is very high; the latter means the offspring are “valuable” (they
have a high survival probability, so it is good to invest into them). When n = 0 is the
optimum, then the population will obviously go extinct with any n, but n = 0 is the slowest
way to extinction, and in this sense is “optimal”.
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