INTRODUCTION TO MATHEMATICAL BIOLOGY

HOMEWORK SOLUTIONS

October 17, 2016

Exercise 5.1

Consider the dynamics

$$
\frac{d N_{i}}{d t}=\left[b_{i}-\mu_{i}-c N\right] N_{i}, \quad i=1, \ldots, n,
$$

and the trade-off $\mu(b)=\mu_{0}+a b^{2}$.
(a) It is easy to check (similarly to Exercises 4.3-4.4) that natural selection maximizes the quantity

$$
g(b)=b-\mu(b)=b-\mu_{0}-a b^{2}
$$

(where I already included the trade-off between b and μ. The maximum value is

$$
\max _{b} g(b)=\max _{b}\left(b-\mu_{0}-a b^{2}\right)=\frac{1-4 a \mu_{0}}{4 a}
$$

which is attained at

$$
b_{i}=b_{\mathrm{opt}}=\frac{1}{2 a} .
$$

(b) The optimal strategy $b_{i}=b_{\text {opt }}$ is viable if and only if there exists a stable equilibrium of the single-strain dynamics, i.e. if and only if

$$
\begin{equation*}
\hat{N}_{i}=\frac{g\left(b_{i}\right)}{c}=\frac{1-4 a \mu_{0}}{4 a c}>0 \Leftrightarrow 4 a \mu_{0}<1 . \tag{1}
\end{equation*}
$$

Hence the optimal strain is actually viable if and only if condition (1) holds. (But notice that, if equation (1) does not hold, any strain has a negative growth rate $b_{i}-\mu_{i}$, so any strain goes extinct.)

Exercise 5.2

Let $x_{i} \in[0,1]$ be the fraction of resources that the variant plant i allocates to self-defence. The corresponding death rate is

$$
\mu_{i}=\mu\left(x_{i}\right)=\frac{\mu_{0}}{1+\alpha x_{i}}
$$

and the birth rate is

$$
b_{i}=b\left(x_{i}\right)=B\left(1-x_{i}\right) .
$$

It is easy to check (similarly to Exercises 4.3) that natural selection maximizes the quantity

$$
g\left(x_{i}\right)=\frac{b\left(x_{i}\right)}{\mu\left(x_{i}\right)}=\frac{B}{\mu_{0}}\left(1-x_{i}\right)\left(1+\alpha x_{i}\right)
$$

The function $g(x)$ is a downward parabola which attains its maximum at

$$
\hat{x}=\frac{\alpha-1}{2 \alpha}, \quad g(\hat{x})=\frac{B}{\mu_{0}} \frac{(\alpha+1)^{2}}{4 \alpha} .
$$

(a) The dynamics of the variant i in absence of any other strain is described by

$$
\frac{d N_{i}}{d t}=b_{i} N_{i}\left(1-\frac{N_{i}}{M}\right)-\mu_{i} N_{i}
$$

Hence, the equilibria are $N_{i}=0$ and

$$
\hat{N}_{i}=\frac{M\left(b_{i}-\mu_{i}\right)}{b_{i}}>0 \Leftrightarrow M\left(1-\frac{1}{g\left(x_{i}\right)}\right)>0 \Leftrightarrow g\left(x_{i}\right)>1
$$

and, by solving the second order equation, we finally get

$$
\begin{aligned}
g\left(x_{i}\right)>1 & \Leftrightarrow\left(1-x_{i}\right)\left(1+\alpha x_{i}\right)>\frac{\mu_{0}}{B} \\
& \Leftrightarrow-\alpha x_{i}^{2}+x_{i}(\alpha-1)+1-\frac{\mu_{0}}{B}>0 \\
& \Leftrightarrow x_{\min }<x_{i}<x_{\max }
\end{aligned}
$$

where

$$
x_{\min }=\frac{\alpha-1-\sqrt{(1+\alpha)^{2}-4 \alpha \mu_{0} / B}}{2 \alpha}, \quad x_{\max }=\frac{\alpha-1+\sqrt{(1+\alpha)^{2}-4 \alpha \mu_{0} / B}}{2 \alpha} .
$$

The set of viable strategies is

$$
X= \begin{cases}{[0,1] \cap\left(x_{\min }, x_{\max }\right)} & \text { if } \Delta:=(1+\alpha)^{2}-4 \alpha \mu_{0} / B>0 \\ \emptyset & \text { if } \Delta \leq 0\end{cases}
$$

(b) Natural selection maximizes the $g\left(x_{i}\right)$, subject to the constrains from point (a), i.e., $x_{\text {opt }}$ is such that

$$
g\left(x_{\mathrm{opt}}\right)=\max _{x \in X} g(x)
$$

If $\Delta \leq 0$, there is no viable strategy. If $\Delta>0$, then we check if the maximum $\hat{x}=\frac{\alpha-1}{2 \alpha}$ lies in $[0,1]$:

$$
\begin{aligned}
& \hat{x}=\frac{\alpha-1}{2 \alpha}<1 \text { for all } \alpha>0 \text { and } \\
& \hat{x}=\frac{\alpha-1}{2 \alpha}>0 \Leftrightarrow \alpha>1
\end{aligned}
$$

Hence, the optimal value is

$$
x_{\mathrm{opt}}= \begin{cases}\hat{x}=\frac{\alpha-1}{2 \alpha} & \text { if } \Delta>0 \text { and } \alpha>1 \\ 0 & \text { if } \Delta>0 \text { and } \alpha \leq 1\end{cases}
$$

(If α is small, then the contribution of the energy for self-defense x_{i} is anyway very small, so the plant should not waste its energy in it, and instead it should concentrate all the energy into reproduction.)
(c) Investigate how X and $x_{\text {opt }}$ change with μ_{0}, the baseline rate of mortality.

$$
\Delta>0 \Leftrightarrow(1+\alpha)^{2}-4 \alpha \mu_{0} / B>0 \Leftrightarrow \mu_{0}<\frac{B(1+\alpha)^{2}}{4 \alpha}
$$

We conclude that viable strategies exist only if μ_{0} is sufficiently small. If the baseline rate of mortality μ_{0} is too large, all the strains go extinct, independently of the birth rate b.

Exercise 5.3

The equation for the continuous-time dynamics during one year is described by the equation

$$
\frac{d n}{d \tau}=-\mu_{0}\left(1+\frac{n}{\mu_{0} / c}\right) n, \quad n(0)=B N_{t},
$$

which has the same form of the logistic equation studied in Exercise 2.1 with

$$
r_{0}=-\mu_{0}, \quad K=-\frac{\mu_{0}}{c}
$$

(notice that this is not exactly the logistic equation because r_{0} is negative!) The explicit solution for $\tau \geq 0$ is

$$
\begin{aligned}
n(\tau) & =\frac{K N_{0}}{N_{0}\left(1-e^{-r_{0} \tau}\right)+K e^{-r_{0} \tau}} \\
& =\frac{-\frac{\mu_{0}}{c} B N_{t}}{B N_{t}\left(1-e^{\mu_{0} \tau}\right)-\frac{\mu_{0}}{c} e^{\mu_{0} \tau}}
\end{aligned}
$$

Hence, at the end of the year $(\tau=1)$ we obtain

$$
N_{t+1}=n(1)=\frac{\mu_{0} B N_{t}}{c B\left(e^{\mu_{0}}-1\right) N_{t}+\mu_{0} e^{\mu_{0}}}=\frac{\lambda N_{t}}{1+\alpha N_{t}}
$$

with

$$
\lambda=B e^{-\mu_{0}}, \quad \alpha=\frac{c B}{\mu_{0}} \frac{e^{\mu_{0}}-1}{e^{\mu_{0}}}
$$

Exercise 5.4

It is a straightforward application of the variation of constants formula for linear ODEs (you can directly obtain it by using a multiplicative factor $e^{-\beta t}$ and integrating both sides of the equation).

Exercise 5.5

(a) Let N_{s}, N_{b} be the number of medicine molecules in the stomach and in the blood, respectively. Then, the dynamics is described by

$$
\begin{aligned}
& \frac{d N_{s}}{d t}=-\alpha N_{s} \\
& \frac{d N_{b}}{d t}=+\alpha N_{s}-\beta N_{b}
\end{aligned}
$$

Let now $s(t)=N_{s}(t) / V_{s}$ and $b(t)=N_{b}(t) / V_{b}$ be the density of medicine in the stomach and in the blood. From the previous system, we obtain the equations for the densities

$$
\begin{aligned}
& \frac{d s}{d t}=\frac{1}{V_{s}} \frac{d N_{s}}{d t}=-\alpha s \\
& \frac{d b}{d t}=\frac{1}{V_{b}} \frac{d N_{b}}{d t}=+\alpha \frac{V_{s}}{V_{b}} s-\beta b
\end{aligned}
$$

(b) Let $s(0)=s_{0}$ be the initial concentration of medicine in the stomach. Then, the first equation gives

$$
s(t)=s_{0} e^{-\alpha t}
$$

and, by plugging it into the second equation and by exploiting the variation of constants formula for linear ODEs (assuming that $b(0)=0$,), we get

$$
\begin{aligned}
b(t) & =\int_{0}^{t} e^{-b(t-s)} \alpha \frac{V_{s}}{V_{b}} s_{0} e^{-\alpha s} d s \\
& =\alpha \frac{V_{s}}{V_{b}} s_{0} e^{-b t} \int_{0}^{t} e^{(b-\alpha) s} d s \\
& =\frac{\alpha}{b-\alpha} \frac{V_{s}}{V_{b}} s_{0}\left(e^{-\alpha t}-e^{-b t}\right)
\end{aligned}
$$

Notice that $b(t)$ is positive for $t \geq 0$ for any value of α, b, and it is vanishing for $t \rightarrow \infty$. Moreover, the concentration of the medicine in the blood $b(t)$ increases until it reaches its maximum and then decreases again.

Figure 1: Qualitative plot of $b(t)$.

