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Exercise 4.1

(a) The reactions are described by the following equations

ds1
dt

= −k1es1 + k−1x1

ds2
dt

= −k2x1s2 + k−2x2

dx1
dt

= +k1es1 − k−1x1 − k2x1s2 + k−2x2

dx2
dt

= +k2x1s2 − k−2x2 − k3x2

We have the following conservation law:

e(t) + x1(t) + x2(t) = constant = e0

and we assume that the enzyme concentration is much smaller than the substrate concen-
tration:

e0 � s1(t), e0 � s2(t).

In particular, we introduce a small parameter ε > 0 and we introduce the scaled variables
x∗1, x

∗
2 such that

e0 = εe∗0, x1 = εx∗1, x2 = εx∗2

(hence x∗1, x∗2 = o(1) are comparable with s1, s2.)
The system becomes

ds1
dt

= ε[−k1e0s1 + (x∗1 + x∗2)s1 + k−1x
∗
1] slow

ds2
dt

= ε[−k2x∗1s2 + k−2x
∗
2] slow

dx∗1
dt

= k1e
∗
0s1 − k1(x∗1 + x∗2)s1 − k−1x∗1 − k2x∗1s2 + k−2x

∗
2 fast

dx∗2
dt

= +k2x
∗
1s2 − k−2x∗2 − k3x∗2 fast
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(b) We find the quasi-equilibrium of x∗1 and x∗2 as a function of s1, s2 and the total
concentration of enzyme e0.{

k1e0s1 − k1(x∗1 + x∗2)s1 − k−1x∗1 − k2x∗1s2 + k−2x
∗
2 = 0

k2x
∗
1s2 − k−2x∗2 − k3x∗2 = 0

⇔


x∗2 =

k1k2s1s2e0
(k1s1 − k−2)k2s2 + (k−2 + k3)(k1s1 + k2s2 + k−1)

x∗1 =
(k−2 + k3)k1s1e0

(k1s1 − k−2)k2s2 + (k−2 + k3)(k1s1 + k2s2 + k−1)

(c) Under the assumption that x∗1, x∗2 equilibrate fast at their stable quasi-equilibrium,
the dynamics of the product P is described by

dP

dt
= k3x

∗
2 =

k1k2k3e0s1s2
(k1s1 − k−2)k2s2 + (k−2 + k3)(k1s1 + k2s2 + k−1)

=
k1k2k3e0s1s2

k1k2s1s2 + (k−2 + k3)k1s1 + k3k2s2 + (k−2 + k3)k−1

Remember that the equation for the product in the classical Michaelis–Menten process
is

dP

dt
= k2x

∗ =
k1k2e0s

k1s+ k−1 + k2
.

(i) If s1 →∞, then the dynamics is dominated by the term

dP

dt
=

k2k3e0s2
k2s2 + k−2 + k3

hence it correspond to the simple Michaelis–Menten process with

E + S2
k2


k−2

X2
k3→ P

(ii) Analogously, for s2 →∞, we have

dP

dt
=

k1k3e0s1
k1s1 + k3

which corresponds to
E + S1

k1−→X1
k3−→ P

Notice that, in this limiting case, the reaction E + S1 is effectively non-reversible. This is
because the complex X1 gets an S2 at once, before it would have time to dissociate back
to E and S1.

Exercise 4.2

Let f(x) = xg(x) with

g(x) = (a+ bx)(c0 − kx)− µ = −bkx2 + (bc0 − ak)x+ ac0 − µ
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Hence g is a downward parabola which is translated along the vertical axis when varying
µ.

The equilibria of the system are x = 0 and x̂ such that g(x̂) = 0, i.e.,

x̂ =
bc0 − ak ±

√
(bc0 − ak)2 + 4bk(ac0 − µ)

2bk
=
bc0 − ak ±

√
(bc0 + ak)2 − 4bkµ

2bk

The solutions exist real iff

µ <
(bc0 + ak)2

4bk
=: µ∗

corresponding to

x̂ = x̂ =
bc0 − ak

2bk
,

and the equilibrium curve x̂ intersects the axis x = 0 at µ = ac0. Moreover, if µ < ac0
there is always at least one positive root x̂1. The sign of the second root depends on the
value of the parameters a, b, c0, k, and they will determine different bifurcation diagrams.

Let us study the stability of equilibria. We have

f ′(x) = xg′(x) + g(x).

In particular,
f ′(0) = g(0) = ac0 − µ,

hence the zero equilibrium is asymptotically stable for µ > ac0. We can conclude about the
stability of the other equilibria (when they exist) by the principle of alternating stability.
In particular:

If bc0−ak > 0, then the fold bifurcation takes place in the positive half-plane at µ = µ∗,
and the 0 equilibrium undergoes a (subcritical) transcritical bifurcation at µ = ac0.

If bc0−ak < 0, the the fold bifurcation takes place in the negative half-plane at µ = µ∗,
and the 0 equilibrium undergoes a (supercritical) transcritical bifurcation at µ = ac0.

Exercise 4.3

We rewrite the model in terms of the relative density of individuals xi = Ni/N , where
N =

∑
Ni is the total population density.

dxi
dt

=
1

N

dNi

dt
− Ni

N2

∑ dNi

dt

= (bi[c0 −
∑
j

kjNj ]− µi)xi − xi
∑
k

(bk[c0 −
∑
j

kjNj ]− µk)xk

Define the average growth rate of the population (which depends on the vector of popula-
tion sizes N as

r(N) :=
∑
k

(bk[c0 −
∑
j

kjNj ]− µk)xk.

Hence,

dxi
dt

= (bi[c0 −
∑
j

kjNj ]− µi − r(N))xi
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Let N̂i be the size of the i-th population at equilibrium, and let N̂ be the vector of the
total population at equilibrium. Then,

c0 −
∑
j

kjN̂j = c̃(N̂)

depends only on the population vector N̂ . Moreover, at equilibrium the growth rate of the
i-th population is zero for all i = 1, . . . , n, and hence N̂i = 0 or

bi[c0 −
∑
j

kjN̂j ]− µi = 0⇔ bi
µi

=
1

c̃(N̂)

It follows that all the strains that are persisting in the population at equilibrium have the
same value bi/µi. To check transversal stability of the equilibrium, assume that a new
strain k is introduced in the population at equilibrium. Then, its growth rate is positive
(i.e., the strain invades the population) iff

bk c̃(N̂)− µk > 0⇔ bk
µk

>
1

c̃(N̂)
.

So we can conclude that natural selection maximizes the value of b/µ.

Exercise 4.4

Assume that the dynamics of the toxin is fast. To represent this, we can introduce a small
parameter ε > 0 and assume that the rates relevant to the toxin are very large (o(1/ε))
compared to the rates relevant to the bacteria (o(1)). In particular, we introduce the scaled
rates α∗i , δ

∗ such that

αi =
α∗i
ε
, δ =

δ∗

ε

(hence, α∗i and δ∗ are order o(1)).
(a) Consider only one strain (n = 1). The (fast) dynamics of T is

ε
dT

dt
= α∗N − δ∗T

and hence its quasi-equilibrium is

T̂ (N) =
α∗

δ∗
N =

α

δ
N

(and notice that it is asymptotically stable).
We plug T̂ into the equation for N and get

dN

dt
= bN − (µ− ρT̂ (N))N = bN −

(
µ− ραN

δ

)
N

= rN

(
1− N

K

)
N

with
r = b− µ, K =

δr

ρα
.
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(b) In presence of more strains (n > 1), the quasi-equilibrium is

T̂ (N) =
1

δ

∑
j

αjNj =
N

δ

∑
j

αjxj

and
dNi

dt
= biNi − (µi − ρT̂ )Ni.

In particular, the dynamics of the relative frequencies xi = Ni/N is

dxi
dt

= (bi − µi − ρT̂ (N))xi − xi
∑
j

(bj − µj − ρT̂ )xj

= (bi − µi)xi − ρT̂xi − xi
∑
j

(bj − µj)xj + xiρT̂
∑
j

xj

= (ri − r)xi

(because
∑

j xj = 1), where ri = bi − µi and r is the average over the total population.
Hence, the density-dependence is nonselective, because the contribution −ρT describing
the density dependence is not involved in the equation for the frequencies. Moreover, the
dominating strain is the one maximizing the growth rate ri = bi − µi.
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