INTRODUCTION TO MATHEMATICAL BIOLOGY

HOMEWORK SOLUTIONS

October 10, 2016

Exercise 4.1

(a) The reactions are described by the following equations

$$
\begin{aligned}
\frac{d s_{1}}{d t} & =-k_{1} e s_{1}+k_{-1} x_{1} \\
\frac{d s_{2}}{d t} & =-k_{2} x_{1} s_{2}+k_{-2} x_{2} \\
\frac{d x_{1}}{d t} & =+k_{1} e s_{1}-k_{-1} x_{1}-k_{2} x_{1} s_{2}+k_{-2} x_{2} \\
\frac{d x_{2}}{d t} & =+k_{2} x_{1} s_{2}-k_{-2} x_{2}-k_{3} x_{2}
\end{aligned}
$$

We have the following conservation law:

$$
e(t)+x_{1}(t)+x_{2}(t)=\mathrm{constant}=e_{0}
$$

and we assume that the enzyme concentration is much smaller than the substrate concentration:

$$
e_{0} \ll s_{1}(t), \quad e_{0} \ll s_{2}(t)
$$

In particular, we introduce a small parameter $\varepsilon>0$ and we introduce the scaled variables x_{1}^{*}, x_{2}^{*} such that

$$
e_{0}=\varepsilon e_{0}^{*}, \quad x_{1}=\varepsilon x_{1}^{*}, \quad x_{2}=\varepsilon x_{2}^{*}
$$

(hence $x_{1}^{*}, x_{2}^{*}=o(1)$ are comparable with s_{1}, s_{2}.)
The system becomes

$$
\begin{aligned}
\frac{d s_{1}}{d t} & =\varepsilon\left[-k_{1} e_{0} s_{1}+\left(x_{1}^{*}+x_{2}^{*}\right) s_{1}+k_{-1} x_{1}^{*}\right] & & \text { slow } \\
\frac{d s_{2}}{d t} & =\varepsilon\left[-k_{2} x_{1}^{*} s_{2}+k_{-2} x_{2}^{*}\right] & & \text { slow } \\
\frac{d x_{1}^{*}}{d t} & =k_{1} e_{0}^{*} s_{1}-k_{1}\left(x_{1}^{*}+x_{2}^{*}\right) s_{1}-k_{-1} x_{1}^{*}-k_{2} x_{1}^{*} s_{2}+k_{-2} x_{2}^{*} & & \text { fast } \\
\frac{d x_{2}^{*}}{d t} & =+k_{2} x_{1}^{*} s_{2}-k_{-2} x_{2}^{*}-k_{3} x_{2}^{*} & & \text { fast }
\end{aligned}
$$

(b) We find the quasi-equilibrium of x_{1}^{*} and x_{2}^{*} as a function of s_{1}, s_{2} and the total concentration of enzyme e_{0}.

$$
\begin{array}{r}
\left\{\begin{array}{l}
k_{1} e_{0} s_{1}-k_{1}\left(x_{1}^{*}+x_{2}^{*}\right) s_{1}-k_{-1} x_{1}^{*}-k_{2} x_{1}^{*} s_{2}+k_{-2} x_{2}^{*}=0 \\
k_{2} x_{1}^{*} s_{2}-k_{-2} x_{2}^{*}-k_{3} x_{2}^{*}=0
\end{array}\right. \\
\Leftrightarrow\left\{\begin{array}{l}
x_{2}^{*}=\frac{k_{1} k_{2} s_{1} s_{2} e_{0}}{\left(k_{1} s_{1}-k_{-2}\right) k_{2} s_{2}+\left(k_{-2}+k_{3}\right)\left(k_{1} s_{1}+k_{2} s_{2}+k_{-1}\right)} \\
x_{1}^{*}=\frac{\left(k_{-2}+k_{3}\right) k_{1} s_{1} e_{0}}{\left(k_{1} s_{1}-k_{-2}\right) k_{2} s_{2}+\left(k_{-2}+k_{3}\right)\left(k_{1} s_{1}+k_{2} s_{2}+k_{-1}\right)}
\end{array}\right.
\end{array}
$$

(c) Under the assumption that x_{1}^{*}, x_{2}^{*} equilibrate fast at their stable quasi-equilibrium, the dynamics of the product P is described by

$$
\begin{aligned}
\frac{d P}{d t}=k_{3} x_{2}^{*} & =\frac{k_{1} k_{2} k_{3} e_{0} s_{1} s_{2}}{\left(k_{1} s_{1}-k_{-2}\right) k_{2} s_{2}+\left(k_{-2}+k_{3}\right)\left(k_{1} s_{1}+k_{2} s_{2}+k_{-1}\right)} \\
& =\frac{k_{1} k_{2} k_{3} e_{0} s_{1} s_{2}}{k_{1} k_{2} s_{1} s_{2}+\left(k_{-2}+k_{3}\right) k_{1} s_{1}+k_{3} k_{2} s_{2}+\left(k_{-2}+k_{3}\right) k_{-1}}
\end{aligned}
$$

Remember that the equation for the product in the classical Michaelis-Menten process is

$$
\frac{d P}{d t}=k_{2} x^{*}=\frac{k_{1} k_{2} e_{0} s}{k_{1} s+k_{-1}+k_{2}}
$$

(i) If $s_{1} \rightarrow \infty$, then the dynamics is dominated by the term

$$
\frac{d P}{d t}=\frac{k_{2} k_{3} e_{0} s_{2}}{k_{2} s_{2}+k_{-2}+k_{3}}
$$

hence it correspond to the simple Michaelis-Menten process with

$$
E+S_{2} \underset{k_{-2}}{\stackrel{k_{2}}{\rightleftharpoons}} X_{2} \stackrel{k_{3}}{\rightarrow} P
$$

(ii) Analogously, for $s_{2} \rightarrow \infty$, we have

$$
\frac{d P}{d t}=\frac{k_{1} k_{3} e_{0} s_{1}}{k_{1} s_{1}+k_{3}}
$$

which corresponds to

$$
E+S_{1} \xrightarrow{k_{1}} X_{1} \xrightarrow{k_{3}} P
$$

Notice that, in this limiting case, the reaction $E+S_{1}$ is effectively non-reversible. This is because the complex X_{1} gets an S_{2} at once, before it would have time to dissociate back to E and S_{1}.

Exercise 4.2

Let $f(x)=x g(x)$ with

$$
g(x)=(a+b x)\left(c_{0}-k x\right)-\mu=-b k x^{2}+\left(b c_{0}-a k\right) x+a c_{0}-\mu
$$

Hence g is a downward parabola which is translated along the vertical axis when varying μ.

The equilibria of the system are $x=0$ and \hat{x} such that $g(\hat{x})=0$, i.e.,

$$
\hat{x}=\frac{b c_{0}-a k \pm \sqrt{\left(b c_{0}-a k\right)^{2}+4 b k\left(a c_{0}-\mu\right)}}{2 b k}=\frac{b c_{0}-a k \pm \sqrt{\left(b c_{0}+a k\right)^{2}-4 b k \mu}}{2 b k}
$$

The solutions exist real iff

$$
\mu<\frac{\left(b c_{0}+a k\right)^{2}}{4 b k}=: \mu^{*}
$$

corresponding to

$$
\hat{x}=\hat{x}=\frac{b c_{0}-a k}{2 b k}
$$

and the equilibrium curve \hat{x} intersects the axis $x=0$ at $\mu=a c_{0}$. Moreover, if $\mu<a c_{0}$ there is always at least one positive root \hat{x}_{1}. The sign of the second root depends on the value of the parameters a, b, c_{0}, k, and they will determine different bifurcation diagrams.

Let us study the stability of equilibria. We have

$$
f^{\prime}(x)=x g^{\prime}(x)+g(x)
$$

In particular,

$$
f^{\prime}(0)=g(0)=a c_{0}-\mu
$$

hence the zero equilibrium is asymptotically stable for $\mu>a c_{0}$. We can conclude about the stability of the other equilibria (when they exist) by the principle of alternating stability. In particular:

If $b c_{0}-a k>0$, then the fold bifurcation takes place in the positive half-plane at $\mu=\mu^{*}$, and the 0 equilibrium undergoes a (subcritical) transcritical bifurcation at $\mu=a c_{0}$.

If $b c_{0}-a k<0$, the the fold bifurcation takes place in the negative half-plane at $\mu=\mu^{*}$, and the 0 equilibrium undergoes a (supercritical) transcritical bifurcation at $\mu=a c_{0}$.

Exercise 4.3

We rewrite the model in terms of the relative density of individuals $x_{i}=N_{i} / N$, where $N=\sum N_{i}$ is the total population density.

$$
\begin{aligned}
\frac{d x_{i}}{d t} & =\frac{1}{N} \frac{d N_{i}}{d t}-\frac{N_{i}}{N^{2}} \sum \frac{d N_{i}}{d t} \\
& =\left(b_{i}\left[c_{0}-\sum_{j} k_{j} N_{j}\right]-\mu_{i}\right) x_{i}-x_{i} \sum_{k}\left(b_{k}\left[c_{0}-\sum_{j} k_{j} N_{j}\right]-\mu_{k}\right) x_{k}
\end{aligned}
$$

Define the average growth rate of the population (which depends on the vector of population sizes \underline{N} as

$$
\bar{r}(\underline{N}):=\sum_{k}\left(b_{k}\left[c_{0}-\sum_{j} k_{j} N_{j}\right]-\mu_{k}\right) x_{k} .
$$

Hence,

$$
\frac{d x_{i}}{d t}=\left(b_{i}\left[c_{0}-\sum_{j} k_{j} N_{j}\right]-\mu_{i}-\bar{r}(\underline{N})\right) x_{i}
$$

Let \hat{N}_{i} be the size of the i-th population at equilibrium, and let $\underline{\hat{N}}$ be the vector of the total population at equilibrium. Then,

$$
c_{0}-\sum_{j} k_{j} \hat{N}_{j}=\tilde{c}(\underline{\hat{N}})
$$

depends only on the population vector $\underline{\hat{N}}$. Moreover, at equilibrium the growth rate of the i-th population is zero for all $i=1, \ldots, n$, and hence $\hat{N}_{i}=0$ or

$$
b_{i}\left[c_{0}-\sum_{j} k_{j} \hat{N}_{j}\right]-\mu_{i}=0 \Leftrightarrow \frac{b_{i}}{\mu_{i}}=\frac{1}{\tilde{c}(\underline{\hat{N}})}
$$

It follows that all the strains that are persisting in the population at equilibrium have the same value b_{i} / μ_{i}. To check transversal stability of the equilibrium, assume that a new strain k is introduced in the population at equilibrium. Then, its growth rate is positive (i.e., the strain invades the population) iff

$$
b_{k} \tilde{c}(\underline{\hat{N}})-\mu_{k}>0 \Leftrightarrow \frac{b_{k}}{\mu_{k}}>\frac{1}{\tilde{c}(\underline{\hat{N}})}
$$

So we can conclude that natural selection maximizes the value of b / μ.

Exercise 4.4

Assume that the dynamics of the toxin is fast. To represent this, we can introduce a small parameter $\varepsilon>0$ and assume that the rates relevant to the toxin are very large $(o(1 / \varepsilon))$ compared to the rates relevant to the bacteria $(o(1))$. In particular, we introduce the scaled rates $\alpha_{i}^{*}, \delta^{*}$ such that

$$
\alpha_{i}=\frac{\alpha_{i}^{*}}{\varepsilon}, \quad \delta=\frac{\delta^{*}}{\varepsilon}
$$

(hence, α_{i}^{*} and δ^{*} are order $\left.o(1)\right)$.
(a) Consider only one strain $(n=1)$. The (fast) dynamics of T is

$$
\varepsilon \frac{d T}{d t}=\alpha^{*} N-\delta^{*} T
$$

and hence its quasi-equilibrium is

$$
\hat{T}(N)=\frac{\alpha^{*}}{\delta^{*}} N=\frac{\alpha}{\delta} N
$$

(and notice that it is asymptotically stable).
We plug \hat{T} into the equation for N and get

$$
\begin{aligned}
\frac{d N}{d t} & =b N-(\mu-\rho \hat{T}(N)) N=b N-\left(\mu-\frac{\rho \alpha N}{\delta}\right) N \\
& =r N\left(1-\frac{N}{K}\right) N
\end{aligned}
$$

with

$$
r=b-\mu, \quad K=\frac{\delta r}{\rho \alpha}
$$

(b) In presence of more strains $(n>1)$, the quasi-equilibrium is

$$
\hat{T}(\underline{N})=\frac{1}{\delta} \sum_{j} \alpha_{j} N_{j}=\frac{N}{\delta} \sum_{j} \alpha_{j} x_{j}
$$

and

$$
\frac{d N_{i}}{d t}=b_{i} N_{i}-\left(\mu_{i}-\rho \hat{T}\right) N_{i}
$$

In particular, the dynamics of the relative frequencies $x_{i}=N_{i} / N$ is

$$
\begin{aligned}
\frac{d x_{i}}{d t} & =\left(b_{i}-\mu_{i}-\rho \hat{T}(\underline{N})\right) x_{i}-x_{i} \sum_{j}\left(b_{j}-\mu_{j}-\rho \hat{T}\right) x_{j} \\
& =\left(b_{i}-\mu_{i}\right) x_{i}-\rho \hat{T} x_{i}-x_{i} \sum_{j}\left(b_{j}-\mu_{j}\right) x_{j}+x_{i} \rho \hat{T} \sum_{j} x_{j} \\
& =\left(r_{i}-\bar{r}\right) x_{i}
\end{aligned}
$$

(because $\sum_{j} x_{j}=1$), where $r_{i}=b_{i}-\mu_{i}$ and \bar{r} is the average over the total population. Hence, the density-dependence is nonselective, because the contribution $-\rho T$ describing the density dependence is not involved in the equation for the frequencies. Moreover, the dominating strain is the one maximizing the growth rate $r_{i}=b_{i}-\mu_{i}$.

