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Exercise 3.1

We consider a logistic population of prey which is harvested by a fixed number P of
predators with Holling type II functional response:

dN

dt
= r0N

(
1− N

K

)
− βN

1 + βTN
P

As usual, let f(N) be the right hand side of this ODE and let g(N) = f(N)/N be the per
capita growth rate,

f(N) = g(N)N, g(N) = r0

(
1− N

K

)
− β

1 + βTN
P

Any bifurcation can occur only if f ′(N̂) = 0 holds at the equilibrium. Recall that with
f ′(N̂) < 0 the equilibrium is asymptotically stable, and with f ′(N̂) > 0 the equilibrium
is asymptotically unstable; in both cases it is hyperbolic. The condition for having a
bifurcation is that we have an equilibrium and it is not hyperbolic:

f(N̂) = 0, f ′(N̂) = 0

Let us first consider a nontrivial equilibrium (N̂ 6= 0). The equilibrium equation f(N̂) = 0
then simplifies to g(N̂) = 0, which is equivalent to

P =
r0
β

(
1− N̂

K

)
(1 + βTN̂)

and the condition for non-hyperbolicity f ′(N̂) = 0 simplifies to g′(N̂) = 0, which yields

P =
r0
β

1 + βTN̂

βTK

Solve the last two equations for the equilibrium N̂ :

N̂ =
βTK − 1

2βT

This is the equilibrium density at which the bifurcation happens. Notice that it is positive
if βTK > 1, i.e., if the handling time is sufficiently long. To get the critical value of the
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parameter P where the bifurcation happens, substitute the critical density into P above
to obtain

Pcrit =
r0
β

(1 + βTK)2

4βTK

At this bifurcation point, the conditions of the fold bifurcation theorem are satisfied: the
derivative of the right hand side of the ODE with respect to the parameter, P , does not
vanish when N > 0, and the second derivative with respect to N also does not vanish (as
long as r > 0). Hence the nontrivial equilibrium undergoes a fold bifurcation at P = Pcrit.

Consider now the trivial equilibrium N̂ = 0. This satisfies the equilibrium condition
f(N̂) = 0. The non-hyperbolicity condition f ′(N̂) = 0 simplifies to g(0) = 0, which
promptly yields Pcrit = r0/β. Note that with N = 0, the derivative of the right hand side
of the ODE with respect to the parameter, P , vanishes. The trivial equilibrium undergoes
a transcritical bifurcation at P = r0/β.

Notice that the critical P value for a fold bifurcation coincides with the critical P value
of the transcritical bifurcation if (1+βTK)2

4βTK = 1; this is the case if (and only if) βTK = 1.
In this case, the fold and transcritical bifurcations “combine”, and the model exhibits a
more exceptional (higher codimension) bifurcation.

The figure below shows the bifurcation diagram of N̂ with respect to P for βKT > 1
(left) and βKT < 1 (right). The stability of the equilibria is easily deduced from the
fact that stable and unstable equilibria alternate and the trivial equilibrium is unstable
for P < r0/β (to the left of the transcritical bifurcation) and stable above. The special
case βTK = 1 corresponds to the situation inbetween, when the fold bifurcation does not
happen above or below the horizontal axis, but exactly on it.

In conclusion, the prey population goes extinct if there are too many predators. If
βTK > 1 (long handling time), then extinction happens through a fold bifurcation, i.e., in
a catastrophic way. When the handling time is short, and therefore the Holling II functional
response is not too different from a linear functional response over the relevant range of
prey population sizes (e.g. for N < K), then extinction happens through a transcritical
bifurcation.

2



Exercise 3.2

We first write the differential equation for the density of searching predators S(t), by
summing up three contributions: searching predators that start pursuing the prey (notice
that a predator pursuing a prey does not count as searching any more); predators that
just finished digesting the prey and become searching again; predators whose prey has
just escaped. We assume the prey density is constant equal to N . The equation for the
searching predators is

dS

dt
= −βNS(t) + pβNS(t− T1 − T2) + (1− p)βNS(t− T1).

We assume that the predator dynamics is at equilibrium Ŝ. In this case, the differential
equation does not tell us any more information about Ŝ, so we use the conservation law and
require that at any time t the total number of searching, pursuing, and handling predators
is a constant P :

P = S(t) +

∫ T1

0
βNS(t− τ)dτ +

∫ T1+T2

T1

pβNS(t− τ)dτ

At equilibrium, this reads

P = Ŝ +

∫ T1

0
βNŜdτ + p

∫ T1+T2

T1

βNŜdτ

⇔ Ŝ =
P

1 + βN(T1 + pT2).

Finally, we determine the functional response of the predator by considering

βNŜ =
βNP

1 + βN(T1 + pT2)
=

[
βN

1 + βN(T1 + pT2)

]
︸ ︷︷ ︸

φ(N)

P.

Notice that the term in round brackets equals the expected handling time of predators,
i.e., p(T1 + T2) + (1 − p)T1. In particular, this exercise is a special case of Exercise 3.3,
where the handling time T has a discrete distribution:

H =

{
T1 with probability 1− p
T1 + T2 with probability p

Exercise 3.3

We proceed in a way very similar to exercise 3.2 and compute the conservation law for
total density of predators:

P = S(t) +

∫ τmax

0
βNS(t− τ)Prob(still handling at t )

= S(t) +

∫ τmax

0
βNS(t− τ)(1− F (τ))dτ
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and at equilibrium, integrating by parts, we get

P = Ŝ + βNŜ

(
τmax −

∫ τmax

0
F (τ))dτ

)
= Ŝ + βNŜ

(
τmax − [τF (τ)]τmax

0 +

∫ τmax

0
τF ′(τ))dτ

)
= Ŝ + βNŜT

where T =
∫ τmax
0 τF ′(τ)dτ is the expected handling time. Hence,

Ŝ =
P

1 + βNT

Exercise 3.4

A fold bifurcation point is characterized by ∂f/∂x(x̂0, µ0) = 0 (and ∂f/∂µ(x̂0, µ0) 6= 0,
∂2f/∂x2(x̂0, µ0) 6= 0). The stability of the equilibrium is determined by the sign of ∂f/∂x,
which we can guess from ∂2f/∂x2 (e.g., ∂2f/∂x2 > 0 means that ∂f/∂x is increasing,
which means that x̂ is stable if x̂ < x̂0, unstable otherwise).

For understanding the shape of the bifurcation diagram, we study the curve µ(x). In
particular,

d2µ

dx2
(x̂0, µ0) =

−∂2f/∂x2

∂f/∂µ
(x̂0, µ0)

and hence the concavity of the curve depends on the relative sign of ∂2f/∂x2 and ∂f/∂µ.
In summary:

• ∂2f/∂x2 > 0: lower branch is stable, upper branch is unstable. If ∂f/∂µ > 0, then
two equilibria exist for µ < µ0; if ∂f/∂µ < 0, two equilibria exist for µ > µ0.

• ∂2f/∂x2 < 0: lower branch is unstable, upper branch is stable. If ∂f/∂µ > 0, then
two equilibria exist for µ > µ0; if ∂f/∂µ < 0, two equilibria exist for µ < µ0.

Exercise 3.5

Remember that, at the transcritical bifurcation point, the following conditions are
satisfied:

∂f

∂x
(0, µ0) = g(0, µ0) = 0,

∂2f

∂µ2
(0, µ0) = 0.

We can understand the stability of the zero equilibrium by studying how the derivative
∂f/∂x depends on µ, i.e., by looking at

b :=
∂2f

∂x∂µ
(0, µ0).

For instance, b > 0 means that ∂f/∂x is increasing with µ, hence 0 is stable for µ < µ0
and unstable otherwise.

To understand the shape, we look at the zeros of the quadratic form

ax2 + 2b(µ− µ0)x = 0
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where

a :=
∂2f

∂x2
(0, µ0) = 2

∂g

∂x
(0, µ0).

In particular,

x =
−b(µ− µ0)± |b(µ− µ0)|

a
.

Notice that one solution will always correspond to the trivial branch x = 0, while the
position of the second branch depends on the sign of a and b.

In summary:

• b = ∂2f
∂x∂µ > 0: zero equilibrium is stable for µ < µ0, unstable for µ > µ0; if a > 0 the

nontrivial equilibrium is positive (and unstable) for µ < µ0 (subcritical bifurcation),
if a < 0, the nontrivial equilibrium is positive (and stable) for µ > µ0 (supercritical
bifurcation)

• b = ∂2f
∂x∂µ < 0: zero equilibrium is unstable for µ < µ0, stable for µ > µ0; if a > 0 the

nontrivial equilibrium is positive (and unstable) for µ > µ0 (subcritical bifurcation),
if a < 0 the nontrivial equilibrium is positive (and stable) for µ < µ0 (supercritical
bifurcation)
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