INTRODUCTION TO MATHEMATICAL BIOLOGY

HOMEWORK SOLUTIONS

December 12, 2016

Exercise 11.1

(a) The positive equilibrium of the system is

$$
\begin{aligned}
\hat{N} & =\frac{\delta}{(\gamma-\delta T) \beta} \\
\hat{P} & =\frac{\gamma}{\delta} r \hat{N}(1-\hat{N} / K)
\end{aligned}
$$

which exists positive if and only if $\gamma>\delta T$ and $\hat{N}<K$. We note that \hat{N} is independent of the parameters r and K.
(b) We compute the jacobian at equilibrium:

$$
\begin{gathered}
J=\left(\begin{array}{cc}
\hat{N}\left(-r / K+\beta \hat{P} \frac{\beta T}{(1+\beta T \hat{N})^{2}}\right) & -\frac{\beta \hat{N}}{1+\beta T \hat{N}} \\
\gamma \beta \hat{P} \frac{(1+\beta T \hat{N}) \hat{N})}{(1+\beta T \hat{N})^{2}} & \frac{\gamma \beta \hat{N}}{(1+\beta T \hat{N})}-\delta
\end{array}\right)=\left(\begin{array}{cc}
\frac{r \hat{N}}{K} \frac{-1+\beta T K-2 \beta T \hat{N}}{1+\beta T \hat{N}} & -\frac{\delta}{\gamma} \\
r \gamma \frac{K-\hat{N}}{K(1+\beta T \hat{N})} & 0
\end{array}\right) \\
\operatorname{tr}(J)=\frac{r \hat{N}}{K} \frac{\beta T K-1-2 \beta T \hat{N}}{1+\beta T \hat{N}}, \quad \operatorname{det}(J)=\delta r \frac{K-\hat{N}}{K(1+\beta T \hat{N})}>0
\end{gathered}
$$

Notice that $\operatorname{tr}(J)$ can be positive or negative according to the value of the parameters. When increasing K the value of \hat{N} stays constant and the trace goes from negative to positive values, hence destabilizing the equilibrium. A necessary condition for Hopf bifurcation to occur is $\operatorname{tr}(J)=0$. Notice that this condition is also sufficient since $\operatorname{det}(J)>0$ (whenever the equilibrium exists positive). Hence, a Hopf bifurcation occurs at

$$
\begin{aligned}
& \frac{r \hat{N}}{K} \frac{\beta T K-1-2 \beta T \hat{N}}{1+\beta T \hat{N}}=0 \\
\Leftrightarrow & \beta T K-1-2 \beta T \hat{N}=0 \\
\Leftrightarrow & \beta T K-1-\frac{2 T \delta}{(\gamma-\delta T)}=0 \\
\Leftrightarrow & K_{\text {Hopf }}=\frac{\gamma+\delta T}{\beta T(\gamma-\delta T)}
\end{aligned}
$$

Exercise 11.2

Consider the Lotka-Volterra predator-prey model

$$
\begin{align*}
& \frac{d N}{d t}=r N-\beta N P \tag{2}\\
& \frac{d P}{d t}=\gamma \beta N P-\delta P
\end{align*}
$$

and the single differential equation

$$
\frac{d P}{d N}=\frac{\gamma \beta N P-\delta P}{r N-\beta N P}
$$

We solve it by separation of variables:

$$
\frac{r-\beta P}{P} d P=\frac{\gamma \beta N-\delta}{N} d N
$$

By integrating both sides, we get

$$
\begin{aligned}
\int \frac{r-\beta P}{P} d P & =\int \frac{\gamma \beta N-\delta}{N} d N \\
\Leftrightarrow \quad r \ln P-\beta P & =\gamma \beta N-\delta \ln N+c
\end{aligned}
$$

where c is a constant that can be determined from the initial conditions. Hence, any orbit (N, P) is such that

$$
\Phi(N, P)=r \ln P+\delta \ln N-\beta P-\gamma \beta N
$$

is constant, hence every orbit lies on a contour line of $\Phi(N, P)$. By plotting the contour lines of $\Phi(N, P)$ (see Figure 1), we conclude that the solutions of the systems are periodic.

Figure 1: Contour lines of $\Phi(N, P)$, plotted with the Matlab function contour.

Exercise 11.3

Let $(N(t), P(t))$ be a periodic solutions of (2) with period T. Let $n(t)=\ln N(t), p(t)=$ $\ln P(t)$. Then, we can write

$$
\begin{aligned}
& \frac{d n}{d t}=\frac{N^{\prime}}{N}=r-\beta P \\
& \frac{d p}{d t}=\frac{P^{\prime}}{P}=\gamma \beta N-\delta .
\end{aligned}
$$

Since after T time the system goes back to the initial point, it holds

$$
\begin{aligned}
& 0=n(T)-n(0)=\int_{0}^{T} \frac{d n}{d t} d t=\int_{0}^{T}(r-\beta P(t)) d t=r T-\beta \int_{0}^{T} P(t) d t \\
& 0=p(T)-p(0)=\int_{0}^{T} \frac{d p}{d t} d t=\int_{0}^{T}(\gamma \beta N(t)-\delta) d t=\gamma \beta \int_{0}^{T} N(t) d t-\delta T
\end{aligned}
$$

From the latter equations we conclude

$$
\begin{aligned}
& \frac{1}{T} \int_{0}^{T} N(t) d t=\frac{\delta}{\gamma \beta} \\
& \frac{1}{T} \int_{0}^{T} P(t) d t=\frac{r}{\beta}
\end{aligned}
$$

Exercise 11.4

The zero-growth isoclines of the of the system are (see Figure 2)

$$
\begin{aligned}
& N_{1} \text {-isocline: } N_{1}=0 \quad \text { or } \quad N_{2}=f\left(N_{1}\right):=\frac{1}{a_{12}}\left[\frac{\beta N_{1}}{\alpha+N_{1}}-\delta_{1}-a_{11} N_{1}\right] \\
& N_{2} \text {-isocline: } N_{2}=0 \quad \text { or } \quad N_{2}=g\left(N_{1}\right):=\frac{1}{a_{22}}\left[b-\delta_{2}-a_{21} N_{1}\right]
\end{aligned}
$$

Figure 2: Qualitative shape of the isoclines of the system in the plane (N_{1}, N_{2}). Black: N_{1}-isocline, red: N_{2}-isocline. (Note that the relative position of the isoclines depends on the parameters).

Note that the N_{1}-isocline is independent of b and $f\left(N_{1}\right)$ is a concave function: if the maximum value is negative, then there is no interior equilibrium. Otherwise, if the maximum of $f\left(N_{1}\right)$ is positive (calculate conditions!) there are two intersections with the N_{1}-axis at

$$
A_{1,2}=\frac{\beta-\delta_{1}-\alpha a_{11} \pm \sqrt{\left(\beta-\delta_{1}-\alpha a_{11}\right)^{2}-4 \delta_{1} \alpha a_{11}}}{2 a_{11}}
$$

(which are both positive).

The N_{2}-isocline is the union of the axis $N_{2}=0$ and the straight line $g\left(N_{1}\right)$ with negative angular coefficient $-a_{21} / a_{22}$, which intersects the N_{2}-axis at $\left(b-\delta_{2}\right) / a_{22}$ and the N_{1}-axis at $\left(b-\delta_{2}\right) / a_{21}$. Hence, increasing b does not affect the slope of the line, but it shifts the line vertically.

Therefore, we can distinguish three cases.
(i) the maximum of f is negative: there is no interior equilibrium of the system for any value of b.
(ii) the maximum of f is positive and $-a_{21} / a_{22}<f^{\prime}\left(A_{2}\right)<0$: the system has no interior equilibrium for $0 \leq b \leq b_{1}$ such that $\left(b_{1}-\delta_{2}\right) / a_{21}=A_{1}$; one interior equilibrium for $b_{1}<b \leq b_{2}$ such that $\left(b_{2}-\delta_{2}\right) / a_{21}=A_{2}$; no interior equilibrium for $b>b_{2}$ (two transcritical bifurcations).
(iii) the maximum of f is positive and $-a_{21} / a_{22} \geq f^{\prime}\left(A_{2}\right)$: the system has no interior equilibrium for $0 \leq b \leq b_{1}$; one interior equilibrium for $b_{1}<b \leq b_{2}$; two interior equilibria for $b_{2} \leq b<b_{3}$ such that f and g are tangent for $b=b_{3}$; no interior equilibrium for $b>b_{3}$ (two transcritical bifurcations and one fold bifurcation of equilibria).

Exercise 11.5

Note that necessary conditions for the existence of a positive equilibrium are

$$
\rho_{1} a_{22}-\rho_{2} a_{12}>0, \quad \text { and } \quad \rho_{2} a_{11}-\rho_{1} a_{21}>0
$$

that imply

$$
\begin{equation*}
a_{11} a_{22}-a_{12} a_{21}>0 \tag{1}
\end{equation*}
$$

(a) Note that $Q\left(\hat{N}_{1}, \hat{N}_{2}\right)=0$ and
$Q\left(N_{1}, N_{2}\right)=a_{11} a_{21}\left[\left(\left(N_{1}-\hat{N}_{1}\right)+\frac{a_{12}}{a_{11}}\left(N_{2}-\hat{N}_{2}\right)\right)^{2}+\frac{a_{12}}{a_{11}} \frac{a_{11} a_{22}-a_{12} a_{21}}{a_{11} a_{21}}\left(N_{2}-\hat{N}_{2}\right)^{2}\right]>0$
thanks to (1).
Finally, we check that Q is decreasing along the trajectories by exploiting the fact that $\left(\hat{N}_{1}, \hat{N}_{2}\right)$ is an equilibrium and by assuming $a_{12} a_{21}>0$:

$$
\begin{aligned}
\frac{d Q}{d t}= & 2 a_{21}\left[a_{11}\left(N_{1}-\hat{N}_{1}\right)+a_{12}\left(N_{2}-\hat{N}_{2}\right)\right] \dot{N}_{1}+2 a_{12}\left[a_{21}\left(N_{1}-\hat{N}_{1}\right)+a_{22}\left(N_{2}-\hat{N}_{2}\right)\right] \dot{N}_{2} \\
= & 2 a_{21}\left[a_{11} N_{1}+a_{12} N_{2}-\rho_{1}\right]\left(\rho_{1}-a_{11} N_{1}-a_{12} N_{2}\right) N_{1} \\
& \quad+2 a_{12}\left[a_{21} N_{1}+a_{22} N_{2}-\rho_{2}\right]\left(\rho_{2}-a_{21} N_{1}-a_{22} N_{2}\right) N_{2} \\
& =-2 a_{21}\left(\rho_{1}-a_{11} N_{1}-a_{12} N_{2}\right)^{2} N_{1}-2 a_{12}\left(\rho_{2}-a_{21} N_{1}-a_{22} N_{2}\right)^{2} N_{2}<0 .
\end{aligned}
$$

Hence, $Q\left(N_{1}, N_{2}\right)$ is a Lyapunov function of the system, which allows to prove the global stability of $\left(\hat{N}_{1}, \hat{N}_{2}\right)$.
(b) One possible solution.

Without loss of generality, assume that $a_{12}=0$. The vertical line $N_{1}=\rho_{1} / a_{11}$ consists of two orbits of the system, hence no other orbit can intersect such line. In particular, the system cannot have periodic orbits. Now, we can identify a bounded region Ω containing $\left(\hat{N}_{1}, \hat{N}_{2}\right)$ such that every orbit eventually enters Ω. Since $\left(\hat{N}_{1}, \hat{N}_{2}\right)$ is the only locally stable equilibrium and there are no periodic orbits, Poincaré-Bendixson theorem allows to conclude that $\left(\hat{N}_{1}, \hat{N}_{2}\right)$ is also globally stable.

