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Exercise 11.1

(a) The positive equilibrium of the system is

N̂ =
δ

(γ − δT )β

P̂ =
γ

δ
rN̂(1− N̂/K)

which exists positive if and only if γ > δT and N̂ < K. We note that N̂ is independent of
the parameters r and K.
(b) We compute the jacobian at equilibrium:

J =

N̂ (−r/K + βP̂ βT

(1+βTN̂)2

)
− βN̂

1+βTN̂

γβP̂ (1+βTN̂)−N̂βT
(1+βTN̂)2

γβN̂

(1+βTN̂)
− δ

 =

 rN̂
K
−1+βTK−2βTN̂

1+βTN̂
− δ
γ

rγ K−N̂
K(1+βTN̂)

0


tr(J) =

rN̂

K

βTK − 1− 2βTN̂

1 + βTN̂
, det(J) = δr

K − N̂
K(1 + βTN̂)

> 0

Notice that tr(J) can be positive or negative according to the value of the parameters.
When increasing K the value of N̂ stays constant and the trace goes from negative to
positive values, hence destabilizing the equilibrium. A necessary condition for Hopf bifur-
cation to occur is tr(J) = 0. Notice that this condition is also sufficient since det(J) > 0
(whenever the equilibrium exists positive). Hence, a Hopf bifurcation occurs at

rN̂

K

βTK − 1− 2βTN̂

1 + βTN̂
= 0

⇔ βTK − 1− 2βTN̂ = 0

⇔ βTK − 1− 2Tδ

(γ − δT )
= 0

⇔ KHopf =
γ + δT

βT (γ − δT )
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Exercise 11.2

Consider the Lotka–Volterra predator-prey model

dN

dt
= rN − βNP

dP

dt
= γβNP − δP

(2)

and the single differential equation

dP

dN
=
γβNP − δP
rN − βNP

We solve it by separation of variables:

r − βP
P

dP =
γβN − δ

N
dN

By integrating both sides, we get∫
r − βP
P

dP =

∫
γβN − δ

N
dN

⇔ r lnP − βP = γβN − δ lnN + c

where c is a constant that can be determined from the initial conditions. Hence, any orbit
(N,P ) is such that

Φ(N,P ) = r lnP + δ lnN − βP − γβN
is constant, hence every orbit lies on a contour line of Φ(N,P ). By plotting the contour
lines of Φ(N,P ) (see Figure 1), we conclude that the solutions of the systems are periodic.

N

P

Figure 1: Contour lines of Φ(N,P ), plotted with the Matlab function contour.

Exercise 11.3

Let (N(t), P (t)) be a periodic solutions of (2) with period T . Let n(t) = lnN(t), p(t) =
lnP (t). Then, we can write

dn

dt
=
N ′

N
= r − βP

dp

dt
=
P ′

P
= γβN − δ.
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Since after T time the system goes back to the initial point, it holds

0 = n(T )− n(0) =

∫ T

0

dn

dt
dt =

∫ T

0
(r − βP (t))dt = rT − β

∫ T

0
P (t)dt

0 = p(T )− p(0) =

∫ T

0

dp

dt
dt =

∫ T

0
(γβN(t)− δ)dt = γβ

∫ T

0
N(t)dt− δT

From the latter equations we conclude

1

T

∫ T

0
N(t)dt =

δ

γβ

1

T

∫ T

0
P (t)dt =

r

β
.

Exercise 11.4

The zero-growth isoclines of the of the system are (see Figure 2)

N1-isocline: N1 = 0 or N2 = f(N1) :=
1

a12

[
βN1

α+N1
− δ1 − a11N1

]
N2-isocline: N2 = 0 or N2 = g(N1) :=

1

a22
[b− δ2 − a21N1] .

b−δ2
a22

− δ1
a21

g(N1)

f(N1)

A1 A2

Figure 2: Qualitative shape of the isoclines of the system in the plane (N1, N2). Black:
N1-isocline, red: N2-isocline. (Note that the relative position of the isoclines depends on
the parameters).

Note that the N1-isocline is independent of b and f(N1) is a concave function: if
the maximum value is negative, then there is no interior equilibrium. Otherwise, if the
maximum of f(N1) is positive (calculate conditions!) there are two intersections with the
N1-axis at

A1,2 =
β − δ1 − αa11 ±

√
(β − δ1 − αa11)2 − 4δ1αa11

2a11

(which are both positive).
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TheN2-isocline is the union of the axisN2 = 0 and the straight line g(N1) with negative
angular coefficient −a21/a22, which intersects the N2-axis at (b− δ2)/a22 and the N1-axis
at (b − δ2)/a21. Hence, increasing b does not affect the slope of the line, but it shifts the
line vertically.

Therefore, we can distinguish three cases.
(i) the maximum of f is negative: there is no interior equilibrium of the system for any

value of b.
(ii) the maximum of f is positive and −a21/a22 < f ′(A2) < 0: the system has no

interior equilibrium for 0 ≤ b ≤ b1 such that (b1 − δ2)/a21 = A1; one interior equilibrium
for b1 < b ≤ b2 such that (b2 − δ2)/a21 = A2; no interior equilibrium for b > b2 (two
transcritical bifurcations).

(iii) the maximum of f is positive and −a21/a22 ≥ f ′(A2): the system has no interior
equilibrium for 0 ≤ b ≤ b1; one interior equilibrium for b1 < b ≤ b2; two interior equilibria
for b2 ≤ b < b3 such that f and g are tangent for b = b3; no interior equilibrium for b > b3
(two transcritical bifurcations and one fold bifurcation of equilibria).

Exercise 11.5

Note that necessary conditions for the existence of a positive equilibrium are

ρ1a22 − ρ2a12 > 0, and ρ2a11 − ρ1a21 > 0,

that imply
a11a22 − a12a21 > 0. (1)

(a) Note that Q(N̂1, N̂2) = 0 and

Q(N1, N2) = a11a21

[(
(N1 − N̂1) +

a12
a11

(N2 − N̂2)

)2

+
a12
a11

a11a22 − a12a21
a11a21

(N2 − N̂2)
2

]
> 0

thanks to (1).
Finally, we check that Q is decreasing along the trajectories by exploiting the fact that

(N̂1, N̂2) is an equilibrium and by assuming a12a21 > 0:

dQ

dt
= 2a21[a11(N1 − N̂1) + a12(N2 − N̂2)]Ṅ1 + 2a12[a21(N1 − N̂1) + a22(N2 − N̂2)]Ṅ2

= 2a21[a11N1 + a12N2 − ρ1](ρ1 − a11N1 − a12N2)N1

+ 2a12[a21N1 + a22N2 − ρ2](ρ2 − a21N1 − a22N2)N2

= −2a21(ρ1 − a11N1 − a12N2)
2N1 − 2a12(ρ2 − a21N1 − a22N2)

2N2 < 0.

Hence, Q(N1, N2) is a Lyapunov function of the system, which allows to prove the global
stability of (N̂1, N̂2).
(b) One possible solution.

Without loss of generality, assume that a12 = 0. The vertical line N1 = ρ1/a11 consists
of two orbits of the system, hence no other orbit can intersect such line. In particular, the
system cannot have periodic orbits. Now, we can identify a bounded region Ω containing
(N̂1, N̂2) such that every orbit eventually enters Ω. Since (N̂1, N̂2) is the only locally
stable equilibrium and there are no periodic orbits, Poincaré–Bendixson theorem allows to
conclude that (N̂1, N̂2) is also globally stable.
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