INTRODUCTION TO MATHEMATICAL BIOLOGY

HOMEWORK SOLUTIONS

December 5, 2016

Exercise 10.1

We compute the jacobian matrix in $(0,0)$:

$$
J=\left(\begin{array}{cc}
r-m & m \\
m & -\mu-m
\end{array}\right)
$$

Hence

$$
\operatorname{tr}(J)=r-\mu-2 m, \quad \operatorname{det}(J)=-r(\mu+m)+m \mu
$$

The equilibrium is unstable (hence, the population is viable) if the determinant is negative or if the trace is positive, i.e., if one of these conditions holds:

$$
r>\frac{m \mu}{\mu+m}
$$

or

$$
r>\mu+2 m
$$

Notice that

$$
\mu+2 m=\frac{(\mu+2 m)(\mu+m)}{\mu+m}=\frac{m \mu}{\mu+m}+\frac{\mu^{2}+2 m \mu+2 m^{2}}{\mu+m}>\frac{m \mu}{\mu+m}
$$

hence we conclude that the population is viable if

$$
r>\frac{m \mu}{\mu+m}
$$

Exercise 10.2

(a) R_{0} is the expected number of offspring in a lifetime of an individual in a virgin environment. Since a juvenile becomes adult with probability $\gamma /\left(\mu_{1}+\gamma\right)$ and the average lifetime of an adult is $1 / \mu_{2}$, we have

$$
R_{0}=\frac{\gamma}{\mu_{1}+\gamma} \frac{b(0)}{\mu_{2}}=\frac{\gamma}{\mu_{1}+\gamma} \frac{b_{0}}{\mu_{2}}
$$

(b) At equilibrium, $\hat{N}_{1}=\mu_{2} \hat{N}_{2} / \gamma$, and

$$
0=b\left(\hat{N}_{2}\right)-\frac{\mu_{1} \mu_{2}}{\gamma}-\mu_{2} \quad \Leftrightarrow \quad \hat{N}_{2}=\frac{1}{c}\left(b_{0}-\frac{\mu_{1} \mu_{2}}{\gamma}-\mu_{2}\right)
$$

(c) We compute the jacobian matrix at equilibrium

$$
\begin{gathered}
J=\left(\begin{array}{cc}
-\mu_{1}-\gamma & b_{0}-2 c \hat{N}_{2} \\
\gamma & -\mu_{2}
\end{array}\right)=\left(\begin{array}{cc}
-\mu_{1}-\gamma & -b_{0}+2 \mu_{2} \frac{\mu_{1}+\gamma}{\gamma} \\
\gamma & -\mu_{2}
\end{array}\right) \\
\operatorname{tr}(J)=-\mu_{1}-\mu_{2}-\gamma<0, \quad \operatorname{det}(J)=b_{0} \gamma-\mu_{1} \mu_{2}-\gamma \mu_{2}
\end{gathered}
$$

hence the equilibrium $\left(\hat{N}_{1}, \hat{N}_{2}\right)$ is stable whenever it is positive, i.e. whenever

$$
b_{0}>\frac{\mu_{1} \mu_{2}}{\gamma}+\mu_{2} .
$$

Exercise 10.3

The equilibrium (\hat{x}, \hat{c}) satisfies

$$
\begin{aligned}
r(\hat{c}) & =f \\
\hat{x} & =\frac{c_{0}-\hat{c}}{k}
\end{aligned}
$$

and it is positive if and only if $c_{0}>\hat{c}=r^{-1}(f)$. The jacobian at equilibrium is

$$
\begin{gathered}
J=\left(\begin{array}{cc}
r(\hat{c})-f & r^{\prime}(\hat{c}) \hat{x} \\
-k r(\hat{c}) & -k r^{\prime}(\hat{c}) \hat{x}-f
\end{array}\right)=\left(\begin{array}{cc}
0 & r^{\prime}(\hat{c}) \hat{x} \\
-k f & -k r^{\prime}(\hat{c}) \hat{x}-f
\end{array}\right) \\
\operatorname{tr}(J)=-k r^{\prime}(\hat{c}) \hat{x}-f<0, \quad \operatorname{det}(J)=k f r^{\prime}(\hat{c}) \hat{x},
\end{gathered}
$$

(because $r^{\prime}(c)>0$ for all c). Hence, we conclude that the equilibrium is stable whenever it is positive. To prove that it is a node, we need to verify that det $-\operatorname{tr}^{2} / 4<0$:

$$
\operatorname{det}-\frac{\operatorname{tr}^{2}}{4}=k f r^{\prime}(\hat{c}) \hat{x}-\frac{\left(k r^{\prime}(\hat{c}) \hat{x}+f\right)^{2}}{4}=-\frac{\left(k r^{\prime}(\hat{c}) \hat{x}-f\right)^{2}}{4}<0
$$

Exercise 10.4

(a) The equilibria are $(0,0)$ and (\hat{N}, \hat{T}) satisfying

$$
\hat{T}=\frac{r}{c}>0, \quad \hat{N}=\frac{\alpha r}{p c}>0
$$

The jacobian at equilibrium is

$$
\begin{gathered}
J=\left(\begin{array}{cc}
0 & -c \hat{N} \\
p & -\alpha
\end{array}\right) \\
\operatorname{tr}(J)=-\alpha<0, \quad \operatorname{det}(J)=p c \hat{N}>0
\end{gathered}
$$

hence the positive equilibrium is always stable.
(b) The nontrivial equilibrium (\hat{N}, \hat{T}) is a stable focus when det $-\operatorname{tr}^{2} / 4>0$, i.e., when

$$
\alpha r-\alpha^{2} / 4>0 \quad \Leftrightarrow \quad \alpha<4 r,
$$

hence oscillations occur when the toxin decays slowly.
(c) Assume $p, \alpha \gg r, c T$. We introduce a small parameter $\varepsilon \ll 1$ and the scaled parameters $p=\tilde{p} / \varepsilon, \alpha=\tilde{\alpha} / \varepsilon$. Then, by substituting and letting $\varepsilon \rightarrow 0$,

$$
\begin{aligned}
\frac{d N}{d t} & =r N-c T N \\
0 & =\tilde{p} N-\tilde{\alpha} T \quad \Rightarrow \quad T=\frac{\tilde{p} N}{\tilde{\alpha}}
\end{aligned}
$$

and hence the dynamics of the bacteria is described by

$$
\frac{d N}{d t}=r N\left(1-\frac{N}{\frac{r \tilde{\tilde{p}}}{\overline{\bar{p}}}}\right)
$$

which is logistic with carrying capacity $K=\frac{r \tilde{\alpha}}{\tilde{p} c}$.

Exercise 10.5

(a) We model the reactions involving $R_{U} U$ and $R_{U} V$:

$$
\begin{aligned}
& \frac{d x}{d t}=k_{1}(1-x-y) u-k_{-1} x \\
& \frac{d y}{d t}=k_{2}(1-x-y) v-k_{-2} y
\end{aligned}
$$

The quasi-equilibrium is

$$
\hat{x}(u, v)=Q_{1} k_{-2} k_{1} u, \quad \hat{y}(u, v)=Q_{1} k_{2} k_{-1} v
$$

where

$$
Q_{1}=\frac{1}{k_{2} k_{-1} v+k_{-2} k_{1} u+k_{-2} k_{-1}} .
$$

For the stability, we compute the jacobian:

$$
J=\left(\begin{array}{cc}
-k_{1} u-k_{-1} & -k_{1} u \\
-k_{2} v & -k_{2} v-k_{-2}
\end{array}\right)
$$

$$
\begin{aligned}
\operatorname{tr}(J) & =-k_{1} u-k_{2} v-k_{-2}<0, \\
\operatorname{det}(J) & =\left(k_{1} u+k_{-1}\right)\left(k_{2} v+k_{-2}\right)-k_{1} k_{2} u v=k_{-1}\left(k_{2} v+k_{-2}\right)+k_{-2} k_{1} u>0,
\end{aligned}
$$

hence the quasi-equilibrium is stable.
Analogously, we derive the system for p and q :

$$
\begin{aligned}
& \frac{d p}{d t}=k_{2}(1-p-q) u-k_{-2} p \\
& \frac{d q}{d t}=k_{1}(1-p-q) v-k_{-1} q
\end{aligned}
$$

The quasi-equilibrium is

$$
\hat{p}(u, v)=Q_{2} k_{2} k_{-1} u, \quad \hat{q}(u, v)=Q_{2} k_{-2} k_{1} v
$$

where

$$
Q_{2}=\frac{1}{k_{2} k_{-1} u+k_{-2} k_{1} v+k_{-2} k_{-1}} .
$$

(a) The slow system is

$$
\begin{aligned}
& \frac{d u}{d t}=a x-\mu u=a Q_{1} k_{-2} k_{1} u-\mu u=\frac{\phi u}{1+\alpha u+\beta v}-\mu u \\
& \frac{d v}{d t}=a q-\mu v=a Q_{2} k_{-2} k_{1} v-\mu v=\frac{\phi v}{1+\beta u+\alpha v}-\mu v
\end{aligned}
$$

with

$$
\phi=a \frac{k_{1}}{k_{-1}}, \quad \alpha=\frac{k_{1}}{k_{-1}}, \quad \beta=\frac{k_{2}}{k_{-2}}
$$

(b) The equilibria of the slow system are $(0,0),\left(0, \hat{v}_{0}\right),\left(\hat{u}_{0}, 0\right)$ and (\hat{u}, \hat{v}) such that

$$
\hat{u}_{0}=\hat{v}_{0}=\frac{\phi-\mu}{\mu \alpha}
$$

and

$$
\hat{u}=\hat{v}=\frac{\phi-\mu}{\mu(\alpha+\beta)}
$$

Notice that the system admits nontrivial equilibria if and only if $\phi>\mu$.
For the stability, we compute the generic jacobian matrix:

$$
J(u, v)=\left(\begin{array}{cc}
\frac{\phi(1+\alpha u+\beta v)-\alpha \phi u}{(1+\alpha u+\beta v)^{2}}-\mu & \frac{-\beta \phi u}{(1+\alpha u+\beta v)^{2}} \\
\frac{-\beta \phi v}{(1+\beta u+\alpha v)^{2}} & \frac{\phi(1+\beta u+\alpha v)-\alpha \phi v}{(1+\beta u+\alpha v)^{2}}-\mu
\end{array}\right)
$$

and then we compute it at the different equilibria:

$$
\begin{aligned}
J(0,0) & =\left(\begin{array}{cc}
\phi-\mu & 0 \\
0 & \phi-\mu
\end{array}\right) \\
J\left(\hat{u}_{0}, 0\right) & =\left(\begin{array}{cc}
\frac{-\alpha \phi \hat{u}_{0}}{\left(1+\alpha \hat{u}_{0}\right)^{2}}-\mu & \frac{-\beta \phi \hat{u}_{0}}{\left(1+\alpha \hat{u}_{0}\right)^{2}} \\
0 & \frac{\phi}{1+\beta \hat{u}_{0}}-\mu
\end{array}\right) \\
J\left(0, \hat{v}_{0}\right) & =\left(\begin{array}{cc}
\frac{\phi}{1+\beta \hat{v}_{0}}-\mu & 0 \\
\frac{-\beta \hat{v}_{0}}{\left(1+\alpha \hat{v}_{0}\right)^{2}} & \frac{-\alpha \phi \hat{v}_{0}}{\left(1+\alpha \hat{v}_{0}\right)^{2}}
\end{array}\right) \\
J\left(\hat{u}_{0}, \hat{v}_{0}\right) & =\left(\begin{array}{cc}
\frac{-\alpha \phi \hat{u}}{(1+\alpha \hat{u}+\beta \hat{v})^{2}} & \frac{-\beta \phi \hat{u}}{(1+\alpha \hat{u}+\beta \hat{v})^{2}} \\
\frac{-\beta \phi \hat{v}}{(1+\beta \hat{u}+\alpha \hat{v})^{2}} & \frac{-\alpha \phi \hat{v}}{(1+\beta \hat{u}+\alpha \hat{v})^{2}}
\end{array}\right)
\end{aligned}
$$

It is easy to check that the trivial equilibrium is always unstable. The positive equilibrium (\hat{u}, \hat{v}) is stable if $\alpha>\beta$ and in this case $\left(\hat{u}_{0}, 0\right)$ and $\left(0, \hat{v}_{0}\right)$ are unstable. Vice versa, if $\alpha<\beta$ the positive equilibrium (\hat{u}, \hat{v}) is unstable and the equilibria $\left(\hat{u}_{0}, 0\right)$ and $\left(0, \hat{v}_{0}\right)$ are stable.

Hence, the system can actually function as a genetic switch only under the condition $\alpha<\beta$.

