
Introduction to Mathematical Biology
Exercises 11.1-11.5

11.1. The paradox of enrichment. Consider the Rosenzweig-MacArthur predator-prey
model,

dN

dt
= rN(1−N/K)− βNP

1 + βTN

dP

dt
=

[
γβN

1 + βTN
− δ
]
P

(1)

and suppose we improve the environment for the prey such that its intrinsic growth rate,
r, and carrying capacity, K, increases.

(a) Show that the equilibrium density of the prey remains the same, and only the equi-
librium density of the predator increases.
(b) Show that increasing K can destabilize the equilibrium, and find the value of K where
the Hopf bifurcation occurs.

If the positive equilibrium is unstable and the system settles on a wide limit cycle, then the prey density
regularly comes near zero, which runs the risk of extinction in not (fully) deterministic systems. Hence
the improvement of prey population growth can lead to the extinction of the prey. This effect is called
the paradox of enrichment.

11.2. Orbits of the Lotka-Volterra predator-prey model. Eliminating time in the Lotka-
Volterra predator-prey model

dN

dt
= rN − βNP

dP

dt
= γβNP − δP

(2)

we obtain a single differential equation that describes the orbits,

dP

dN
=
γβNP − δP
rN − βNP

Solve this equation to show that the orbits are the contour lines given by Φ(N,P ) = const
where

Φ(N,P ) = r lnP + δ lnN − βP − γβN
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Φ(N,P ) is a constant of motion. Recall that models with a constant of motion are de-
generate (a small change in the model will change the dynamics qualitatively, so that a
constant of motion would no longer exist). If you have any software at hand that can
draw contour lines, draw some of the orbits of the Lotka-Volterra predator-prey model.

11.3. Time averages in the Lotka-Volterra predator-prey model. The Lotka-Volterra model
in (2) has the positive equilibrium (N̂ , P̂ ) = ( δ

γβ
, r
β
), but this equilibrium is not asymp-

totically stable; the system settles on one of the neutral cycles obtained in the previous
exercise. Show that even though the densities keep oscillating as the system cycles, the
average density equals the equilibrium density, i.e.,

1

T

∫ T

0

N(t)dt =
δ

γβ
= N̂ ,

1

T

∫ T

0

P (t)dt =
r

β
= P̂

where T is the length of a cycle. Note that this equality is specific to the Lotka-Volterra
model, in other models the time average along a periodic orbit does not equal to the equi-
librium density. Hint: write ODEs for lnN and lnP ; use that after T time, the system
must get back to the initial point.

11.4. Competition with an Allee-effect. The following model assumes Lotka-Volterra
competition for species 2, but the per capita growth rate of species 1 is a nonlinear
function of N1 due to an Allee effect in the birth rate:

dN1

dt
=

(
βN1

α +N1

− (δ1 + a11N1 + a12N2)

)
N1

dN2

dt
=

(
b− (δ2 + a21N1 + a22N2)

)
N2

Perform a bifurcation analysis of this model with respect to b, the (constant) birth rate
of species 2. Hint: it can be useful to sketch the zero-growth isoclines on the phase plane
as a start.

11.5. Global stability of the coexistence equilibrium in the Lotka-Volterra competition
model with two species. Consider the Lotka-Volterra competition model with two species
of consumers,

dN1

dt
= (ρ1 − a11N1 − a12N2)N1

dN2

dt
= (ρ2 − a21N1 − a22N2)N2

and with parameters such that there is an interior equilibrium (N̂1, N̂2) ∈ int R2
+.

(a) Show that

Q(N1, N2) = a11a21(N1 − N̂1)
2 + 2a12a21(N1 − N̂1)(N2 − N̂2) + a12a22(N2 − N̂2)
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is a strict Lyapunov-function on int R2
+ provided that a12a21 > 0, and that this guarantees

the global asymptotic stability of (N̂1, N̂2) in the coexistence case of a21/a11 < ρ2/ρ1 <
a22/a12. (Hint: One must use that (N̂1, N̂2) is the equilibrium, but to avoid a hopeless
mess, don’t substitute the values of (N̂1, N̂2) as expressed by the parameters!)

(b) Investigate the global stability of (N̂1, N̂2) in the special case when a12a21 = 0.
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