Open Quantum Systems: Exercise session 5

Kay Schwieger, Paolo Muratore-Ginanneschi, Dmitry Golubev and Brecht Donvil

October 6, 2016

Tuesday 11/11

Exercise 1

Find the lowest eigen-frequency of cubic metallic cavity with the size $L=1 \mathrm{~cm}$. (Model the cubic cavity as a three dimensional box)

Exercise 2

Prove the identity

$$
e^{i \alpha \hat{\sigma}_{x}}=\left(\begin{array}{cc}
\cos \alpha & i \sin \alpha \tag{1}\\
i \sin \alpha & \cos \alpha
\end{array}\right), \quad \text { where } \hat{\sigma}_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Exercise 3

A two level system driven by microwave signal is described by the Hamiltonian
$\hat{H}=-\frac{\hbar \omega_{e g}}{2} \hat{\sigma}_{z}+\frac{\hbar \Omega_{0}}{2}\left(\hat{\sigma}_{+} e^{-i \omega_{e g} t}+\hat{\sigma}_{-} e^{i \omega_{e g} t}\right)=\frac{\hbar}{2}\left(\begin{array}{cc}-\omega_{e g} & \Omega_{0} e^{-i \omega_{e g} t} \\ \Omega_{0} e^{i \omega_{e g} t} & \omega_{e g}\end{array}\right)$.
We assume that at $t=0$ the system is in the ground state, i.e. the system wave function has the form

$$
\begin{equation*}
\psi(0)=\binom{1}{0} \tag{3}
\end{equation*}
$$

In order to find the wave function at finite time, one needs to solve the Schrödinger equation

$$
\begin{equation*}
i \hbar \frac{\partial \psi(t)}{\partial t}=\hat{H} \psi(t) \tag{4}
\end{equation*}
$$

The solution has the form of a vector

$$
\begin{equation*}
\psi(t)=\binom{c_{g}(t)}{c_{e}(t)} \tag{5}
\end{equation*}
$$

Find the occupation probabilities of the ground and excited states $P_{g}(t)=$ $\left|c_{g}(t)\right|^{2}$ and $P_{e}(t)=\left|c_{e}(t)\right|^{2}$. At what times t one finds $P_{g}(t)=0, P_{e}(t)=1$? At what times equal occupations of the levels is achieved, i.e. $P_{g}(t)=P_{e}(t)=1 / 2$?

Hint

Find the solution in the form $c_{g}(t)=e^{i \omega_{e g} t / 2} u_{g}(t), c_{e}(t)=e^{-i \omega_{e g} t / 2} u_{e}(t)$.

Tuesday 13/11

Exercise 4

A classical Josephson junction is described by the equation of motion

$$
\begin{equation*}
C \frac{\hbar \ddot{\phi}}{2 e}+I_{C} \sin \phi=I \tag{6}
\end{equation*}
$$

the bias current is supposed to be smaller than the critical current I_{C}. At $I=0$ the frequency of small oscillations around equilibrium $\phi=0$ equals $\omega_{p}=\sqrt{2 e I_{C} / \hbar C}$. Find this frequency at arbitrary bias current $I<I_{C}$.

Exercise 5

(problem 7.3 Nielsen and Chuang)
Let us look at the Jaynes-Cummings Hamiltonian for a single atom coupled to a single mode of an electromagnetic field

$$
\begin{equation*}
H=a^{\dagger} \sigma_{-}+a \sigma_{+} \tag{7}
\end{equation*}
$$

(1) For $u=e^{i \theta H}$, compute

$$
\begin{equation*}
A_{n}=\langle n| U|\alpha\rangle \tag{8}
\end{equation*}
$$

where $|n\rangle$ is a number eigenstate of the field and $|\alpha\rangle=e^{-\frac{|\alpha|^{2}}{2}} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle$ is a coherent state, so $a|\alpha\rangle=\alpha|\alpha\rangle$ and $a^{\dagger}|\alpha\rangle=\left(\frac{\partial}{\partial \alpha}+\alpha^{*}\right)|\alpha\rangle$. A_{n} is an operator on atomic states and you should obtain

$$
A_{n}=e^{-\frac{|\alpha|^{2}}{2}} \frac{\alpha^{n}}{n!}\left(\begin{array}{cc}
\cos (\theta \sqrt{n}) & \frac{i \sqrt{n}}{\alpha} \sin (\theta \sqrt{n}) \tag{9}\\
\frac{i \alpha}{\sqrt{n+1}} \sin (\theta \sqrt{n+1}) & \cos (\theta \sqrt{n+1})
\end{array}\right)
$$

(2) Consider the probability distribution

$$
\begin{equation*}
p_{n}=e^{-x} \frac{x^{n}}{n!} \tag{10}
\end{equation*}
$$

Make a change of variables $n=x-L \sqrt{x}$ and use Sterling's approximation $n!\approx \sqrt{2 \pi n} n^{n} e^{-n}$ to obtain

$$
\begin{equation*}
P_{L} \approx \frac{e^{-\frac{L^{2}}{2}}}{\sqrt{2 \pi}} \tag{11}
\end{equation*}
$$

(3) Now define $n=\alpha^{2}+L \alpha$ and show for

$$
\begin{equation*}
c=\frac{1}{\alpha} \sqrt{\alpha^{2}+L \alpha} \quad \text { and } \quad d=\frac{1}{\alpha} \sqrt{\alpha^{2}+L \alpha+1} \tag{12}
\end{equation*}
$$

that

$$
A_{L} \approx \frac{e^{-\frac{L^{2}}{4}}}{(2 \pi)^{1 / 4}}\left(\begin{array}{cc}
\cos (\theta a / \alpha) & i a \sin (\theta a / \alpha) \tag{13}\\
\frac{i}{b} \sin (\theta b / \alpha) & \cos (\theta b / \alpha)
\end{array}\right)
$$

Exercise 6

Exercise 5 from exercise session 4 (Partial Transpose Criterium)

