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1. One Fermion is a Qubit

Let a ∈ B(H) be an element satisfying the CAR, i. e., a2 = 0 and aa∗ + a∗a = 1.
Show that M = lin{a, a∗, a∗a, aa∗} is a subsystem with M ' M2(C) by making
explicit the map π that assigns to each matrix X ∈M2(C) an operator π(X) ∈M.
Check that π satisfies π(XY ) = π(X)π(Y ) for all X,Y ∈M2(C).

2. Computations with CAR

Let a1, . . . , aN ∈ B(H) be operators satisfying the CAR, i. e., aiaj = −aiai and
aia
∗
j + a∗jai = δi,j for all 1 ≤ i, j ≤ N . We write M ⊆ B(H) for the ∗-subalgebra

generated by a1, . . . , aN . Show the following statements:
(1) The operators bi := a∗i also satisfy the CAR.
(2) Each ai and all products V := ai1 . . . aik are partial isometries with V 2 = 0.
(3) All initial and final projections a∗i ai and aja

∗
j commute among each other.

(4) The orthogonal projection onto the intersection of the subspace a1a
∗
1H and

a2a
∗
2H is an operator in M. Write the projection in terms of a1 and a2.

(5) M is the linear span of all products of the form

ai1 . . . aina
∗
jm
. . . a∗j1

, (1)

where we agree that the product of length 0 is 1. For which combination
of indices does such a product vanish?

3. Fermions and Independence

Consider H = C2⊗C2 with the two Fermionic annihilation operators a1 = a⊗1 and
a2 = σz ⊗ a, where a = ( 0 0

1 0 ) and σz =
( 1 0

0 −1
)
. Let Mk = lin{ak, a∗k, a∗kak, aka∗k}

for k ∈ {1, 2} be the associated subsystems.
(1) Check thatM1 andM2 are not each others commutant and determine the

commutant of M2.
(2) Show thatM1 andM2 are independent with respect to the vacuum state.

In applications each Fermionic mode has an associated energy ε1, ε2. Consider the
free Hamiltonian H = ε1a

∗
1a1+ε2a∗2a2 and the density matrix ρβ := e−βH/Tr(e−βH),

called the Gibbs state of inverse temperature β > 0.1

(3) Show that M1 and M2 are independent with respect to any Gibbs state.
The following exercise is optional but—I think—interesting:

(4) Determine all density matrices ρ ∈ B(H) such that M1 and M2 are inde-
pendent with respect to ρ.
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4. Computing the Schmidt Decomposition

(1) Determine the Schmidt decomposition of the following (not normalized)
vector in C4 = C2 ⊗ C2:

ψ := (1 +
√

2, 1−
√

2, 1−
√

2, 1 +
√

2)T .
(2) Consider the tensor product HS ⊗ HE and let ϕ,ψ ∈ HS ⊗ HE be two

unit vectors with Tr2(|ϕ〉〈ϕ|) = Tr2(|ψ〈〉ψ|). Show that there is a partial
isometry V ∈ B(HE) with ψ = (1 ⊗ V )ϕ. Moreover, V can be choosen
unitary if HE is finite-dimensional.

5. Partial Transpose Criterium

Consider the tensor product MN (C)⊗MN (C) of two matrix algebras. For a block

matrix X =
(

X11 ... X1N

...
...

XN1 ... XNN

)
with Xij ∈MN (C) its partial transpose is definde as

PT(X) :=

X11 . . . XN1
...

...
X1N . . . XNN

 .

(1) Show that the partial transpose PT(ρ) of a separable density matrix ρ is
again a density matrix, in particular it is positive.

The set MN (C)⊗MN (C) has a particularly simple symmetry given by the tensor
flip F , i. e., the unitary F ∈ MN (C)⊗MN (C) given by F (ϕ1 ⊗ ϕ2) = ϕ2 ⊗ ϕ1 for
all ϕ1, ϕ2 ∈ CN .

(1) Write F as a block matrix.
(2) Show that P+ := (1 + F )/2 is the projection onto the space of fixed points

of F , called the symmetric subspace. Show that P− := (1−F )/2 is the pro-
jection onto the space of vectors ψ with Fψ = −ψ, called the antisymmetric
subspace.

(3) What is the dimension d+ of the symmetric subspace and d− of the anti-
symmetric subspace?

States of the form ρ(α) = α(P+/d+) + (1 − α)(P−/d−) with 0 ≤ α ≤ 1 are called
Werner states.

(1) Apply the criterium in point 1 to find a range of parameters α for which
ρ(α) is entangled?

6. Entanglement and a Question of Locality?

Let e, f by a fixed orthonormal basis of C2 and consider the vector
ψ = 1√

2 (e⊗ e+ f ⊗ f)

describing the state of the quantum system M2(C)⊗M2(C). Now let P ∈ M2(C)
be an arbitrary one-dimensional projection and consider a measurement of P in the
first tensor factor, i. e., a measurement of P ⊗ 1, which yields either 1 or 0 as a
result.

(1) What is the probability to obtain the measure result 1 / 0? In each case,
what is the state after the measurement?

(2) Compare the marginal density on the second tensor factor before and after
the measurement. Do you find the result surprising?


