INTRODUCTION TO OPEN QUANTUM SYSTEMS EXERCISE SESSION 4

D. GOLUBEV, P. MURATORE-GINANNESCHI, K. SCHWIEGER

Tuesday, 04. Oct.

1. One Fermion is a Qubit

Let $a \in \mathcal{B}(\mathcal{H})$ be an element satisfying the CAR, i.e., $a^{2}=0$ and $a a^{*}+a^{*} a=1$. Show that $\mathcal{M}=\operatorname{lin}\left\{a, a^{*}, a^{*} a, a a^{*}\right\}$ is a subsystem with $\mathcal{M} \simeq M_{2}(\mathbb{C})$ by making explicit the map π that assigns to each matrix $X \in M_{2}(\mathbb{C})$ an operator $\pi(X) \in \mathcal{M}$. Check that π satisfies $\pi(X Y)=\pi(X) \pi(Y)$ for all $X, Y \in M_{2}(\mathbb{C})$.

2. Computations with CAR

Let $a_{1}, \ldots, a_{N} \in \mathcal{B}(\mathcal{H})$ be operators satisfying the CAR, i. e., $a_{i} a_{j}=-a_{i} a_{i}$ and $a_{i} a_{j}^{*}+a_{j}^{*} a_{i}=\delta_{i, j}$ for all $1 \leq i, j \leq N$. We write $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$ for the ${ }^{*}$-subalgebra generated by a_{1}, \ldots, a_{N}. Show the following statements:
(1) The operators $b_{i}:=a_{i}^{*}$ also satisfy the CAR.
(2) Each a_{i} and all products $V:=a_{i_{1}} \ldots a_{i_{k}}$ are partial isometries with $V^{2}=0$.
(3) All initial and final projections $a_{i}^{*} a_{i}$ and $a_{j} a_{j}^{*}$ commute among each other.
(4) The orthogonal projection onto the intersection of the subspace $a_{1} a_{1}^{*} \mathcal{H}$ and $a_{2} a_{2}^{*} \mathcal{H}$ is an operator in \mathcal{M}. Write the projection in terms of a_{1} and a_{2}.
(5) \mathcal{M} is the linear span of all products of the form

$$
\begin{equation*}
a_{i_{1}} \ldots a_{i_{n}} a_{j_{m}}^{*} \ldots a_{j_{1}}^{*} \tag{1}
\end{equation*}
$$

where we agree that the product of length 0 is 1 . For which combination of indices does such a product vanish?

3. Fermions and Independence

Consider $\mathcal{H}=\mathbb{C}^{2} \otimes \mathbb{C}^{2}$ with the two Fermionic annihilation operators $a_{1}=a \otimes 1$ and $a_{2}=\sigma_{z} \otimes a$, where $a=\left(\begin{array}{cc}0 & 0 \\ 1 & 0\end{array}\right)$ and $\sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Let $\mathcal{M}_{k}=\operatorname{lin}\left\{a_{k}, a_{k}^{*}, a_{k}^{*} a_{k}, a_{k} a_{k}^{*}\right\}$ for $k \in\{1,2\}$ be the associated subsystems.
(1) Check that \mathcal{M}_{1} and \mathcal{M}_{2} are not each others commutant and determine the commutant of \mathcal{M}_{2}.
(2) Show that \mathcal{M}_{1} and \mathcal{M}_{2} are independent with respect to the vacuum state. In applications each Fermionic mode has an associated energy $\epsilon_{1}, \epsilon_{2}$. Consider the free Hamiltonian $H=\epsilon_{1} a_{1}^{*} a_{1}+\epsilon_{2} a_{2}^{*} a_{2}$ and the density matrix $\rho_{\beta}:=e^{-\beta H} / \operatorname{Tr}\left(e^{-\beta H}\right)$, called the Gibbs state of inverse temperature $\beta>0 .{ }^{1}$
(3) Show that \mathcal{M}_{1} and \mathcal{M}_{2} are independent with respect to any Gibbs state. The following exercise is optional but-I think-interesting:
(4) Determine all density matrices $\rho \in \mathcal{B}(\mathcal{H})$ such that \mathcal{M}_{1} and \mathcal{M}_{2} are independent with respect to ρ.

[^0]${ }^{1}$ You may want to put some \hbar 's here if you are a physicist.

Thursday, 06. Оct.

4. Computing the Schmidt Decomposition

(1) Determine the Schmidt decomposition of the following (not normalized) vector in $\mathbb{C}^{4}=\mathbb{C}^{2} \otimes \mathbb{C}^{2}$:

$$
\psi:=(1+\sqrt{2}, 1-\sqrt{2}, 1-\sqrt{2}, 1+\sqrt{2})^{T}
$$

(2) Consider the tensor product $\mathcal{H}_{S} \otimes \mathcal{H}_{E}$ and let $\varphi, \psi \in \mathcal{H}_{S} \otimes \mathcal{H}_{E}$ be two unit vectors with $\operatorname{Tr}_{2}(|\varphi\rangle\langle\varphi|)=\operatorname{Tr}_{2}(|\psi\langle \rangle \psi|)$. Show that there is a partial isometry $V \in \mathcal{B}\left(\mathcal{H}_{E}\right)$ with $\psi=(1 \otimes V) \varphi$. Moreover, V can be choosen unitary if \mathcal{H}_{E} is finite-dimensional.

5. Partial Transpose Criterium

Consider the tensor product $M_{N}(\mathbb{C}) \otimes M_{N}(\mathbb{C})$ of two matrix algebras. For a block matrix $X=\left(\begin{array}{ccc}X_{11} & \ldots & X_{1 N} \\ \vdots & & \vdots \\ X_{N 1} & \ldots & X_{N N}\end{array}\right)$ with $X_{i j} \in M_{N}(\mathbb{C})$ its partial transpose is definde as

$$
\operatorname{PT}(X):=\left(\begin{array}{ccc}
X_{11} & \ldots & X_{N 1} \\
\vdots & & \vdots \\
X_{1 N} & \ldots & X_{N N}
\end{array}\right)
$$

(1) Show that the partial transpose $\operatorname{PT}(\rho)$ of a separable density matrix ρ is again a density matrix, in particular it is positive.
The set $M_{N}(\mathbb{C}) \otimes M_{N}(\mathbb{C})$ has a particularly simple symmetry given by the tensor flip F, i. e., the unitary $F \in M_{N}(\mathbb{C}) \otimes M_{N}(\mathbb{C})$ given by $F\left(\varphi_{1} \otimes \varphi_{2}\right)=\varphi_{2} \otimes \varphi_{1}$ for all $\varphi_{1}, \varphi_{2} \in \mathbb{C}^{N}$.
(1) Write F as a block matrix.
(2) Show that $P_{+}:=(1+F) / 2$ is the projection onto the space of fixed points of F, called the symmetric subspace. Show that $P_{-}:=(1-F) / 2$ is the projection onto the space of vectors ψ with $F \psi=-\psi$, called the antisymmetric subspace.
(3) What is the dimension d_{+}of the symmetric subspace and d_{-}of the antisymmetric subspace?
States of the form $\rho(\alpha)=\alpha\left(P_{+} / d_{+}\right)+(1-\alpha)\left(P_{-} / d_{-}\right)$with $0 \leq \alpha \leq 1$ are called Werner states.
(1) Apply the criterium in point 1 to find a range of parameters α for which $\rho(\alpha)$ is entangled?

6. Entanglement and a Question of Locality?

Let e, f by a fixed orthonormal basis of \mathbb{C}^{2} and consider the vector

$$
\psi=\frac{1}{\sqrt{2}}(e \otimes e+f \otimes f)
$$

describing the state of the quantum system $M_{2}(\mathbb{C}) \otimes M_{2}(\mathbb{C})$. Now let $P \in M_{2}(\mathbb{C})$ be an arbitrary one-dimensional projection and consider a measurement of P in the first tensor factor, i.e., a measurement of $P \otimes 1$, which yields either 1 or 0 as a result.
(1) What is the probability to obtain the measure result $1 / 0$? In each case, what is the state after the measurement?
(2) Compare the marginal density on the second tensor factor before and after the measurement. Do you find the result surprising?

[^0]: Date: 04.-06. Oct. 2016.

