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1. Position and Momentum Representation

Consider the Hilbert space H = L2(T) and denote by F : `2(Z) → L2(T) the
Fourier transform. We consider the position operator

Q : L2(T)→ L2(T), (Qϕ)(z) := z ϕ(z).

(1) Check thatQ is a unitary operator. How does the position operator look like
in the Fourier-transformed picture? That is, compute F−1QF explicitly.

The representation of operator on L2(T) is called position representation, the Fourier
transformed representation on `2(Z) is called momentum representation.

(2) What is the spectrum of Q? (For the answer there is no detailed argument
requested, but optionally: Prove that your answer is correct.) For a given
subinterval E of the spectrum, what is the corresponding spectral subspace?

2. Momentum Operator on a Circle

As in the previous exercise consider the Hilbert space H = L2(T) and the Fourier
transform F : `2(Z)→ L2(T).

(1) The momentum operator is conveniently defined on `2(Z) by P̃ (ψn)n :=
(nψn)n for suitable vectors (ψn)n ∈ `2(Z).1 What is a dense linear subset
of vectors on which P can be defined.

(2) Show that P̃ is not bounded on your selected subspace.
For the rest of this exercise we ignore possible problems stemming to the fact that
P̃ is unbounded.

(3) What is the spectrum of P̃ and what are corresponding eigenvectors?
(4) How does the momentum operator look like in position representation?

That is, compute P := FP̃F−1. What commutation relations do P and Q
satisfy?

3. Orthogonal Projections

Show that for an operator P ∈ B(H) the following statements are equivalent:
(a) P is an orthogonal projection, i. e., P 2 = P = P ∗.
(b) P 2 = P and kerP ⊥ PH.
(c) P = P ∗ and P has spectrum in {0, 1}.

Optional: Show that the conditions are also equivalent to
(d) P 2 = P and ‖P‖op ≤ 1.
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1Here we consider units in which the Planck constant is normalized to ~ = 1.
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4. Partial Isometries

(1) Let V ∈ B(H) be an operator such that V ∗V is a projection. Show that
also V V ∗ is a projection.
Hint: A way to proceed is to first show that P ∈ B(H) is a projection if
P ∗ = P and P 3 = P 2.

(2) Let V ∈ B(H) be a partial isometry. Describe in word in terms of V onto
which subspace the projections V ∗V and V V ∗ project.
V ∗V is called the initial projection and V V ∗ is called the final projection.

5. Weak Convergence

For the weak convergence you may wonder what operations are weakly continuous
and which are not.

(1) Let Ai, A,B ∈ B(H). Check that, if Ai → A weakly then A∗
i → A,

BAi → BA, and AiB → AB weakly.
(2) Let H = `2(N) and S : `2(N) → `2(N) the one-sided shift. Show that the

sequence Sn → 0 weakly but not in norm.
(3) It follows from 1, 2 that also An := Sn and Bn := (S∗) converge to zero

weakly. Show that AnBn converges weakly to zero but BnAn does not.

6. Tensor Products

Let H be an arbitrary Hilbert space. We write L2(T,H) for the set of all functions
(up to measure zero) ϕ : T→ H with a finite integral

∫
T|ϕ(z)|2 dz. Define an inner

product on L2(T,H) and show that
L2(T,H) = L2(T)⊗H


