INTRODUCTION TO OPEN QUANTUM SYSTEMS
EXERCISE SESSION 3
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TUESDAY, 27. SEP.
1. POSITION AND MOMENTUM REPRESENTATION

Consider the Hilbert space H = L?(T) and denote by F : ¢*(Z) — L*(T) the
Fourier transform. We consider the position operator

Q:L*(T) = L*(T), (Q¢)(2) = z¢(2).

(1) Check that @ is a unitary operator. How does the position operator look like
in the Fourier-transformed picture? That is, compute F~'QF explicitly.

The representation of operator on L?(T) is called position representation, the Fourier
transformed representation on ¢2(Z) is called momentum representation.
(2) What is the spectrum of Q7 (For the answer there is no detailed argument
requested, but optionally: Prove that your answer is correct.) For a given
subinterval E of the spectrum, what is the corresponding spectral subspace?

2. MOMENTUM OPERATOR ON A CIRCLE

As in the previous exercise consider the Hilbert space H = L?(T) and the Fourier
transform F : (2(Z) — L?(T).
(1) The momentum operator is conveniently defined on ¢2(Z) by P (i), :=
(n 1y )y, for suitable vectors (¢,,), € €2(Z)." What is a dense linear subset
of vectors on which P can be defined.
(2) Show that P is not bounded on your selected subspace.
For the rest of this exercise we ignore possible problems stemming to the fact that
P is unbounded.
(3) What is the spectrum of P and what are corresponding eigenvectors?
(4) How does the momentum operator look like in position representation?
That is, compute P := FPF~!. What commutation relations do P and Q
satisfy?

3. ORTHOGONAL PROJECTIONS

Show that for an operator P € B(H) the following statements are equivalent:
(a) P is an orthogonal projection, i.e., P2 = P = P*.
(b) P? =P and ker P 1. PH.
(¢) P = P* and P has spectrum in {0,1}.
Optional: Show that the conditions are also equivalent to
(d) P? =P and 1P, < 1.

Date: 27.-29. Sep. 2016.
Here we consider units in which the Planck constant is normalized to / = 1.
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4. PARTIAL ISOMETRIES

(1) Let V € B(H) be an operator such that V*V is a projection. Show that
also V'V* is a projection.
Hint: A way to proceed is to first show that P € B(H) is a projection if
P* = P and P? = P2

(2) Let V € B(H) be a partial isometry. Describe in word in terms of V' onto
which subspace the projections V*V and VV* project.
V*V is called the initial projection and VV* is called the final projection.

5. WEAK CONVERGENCE

For the weak convergence you may wonder what operations are weakly continuous
and which are not.
(1) Let A;,A,B € B(H). Check that, if 4; — A weakly then Af — A,
BA;, — BA, and A;B — AB weakly.
(2) Let H = ¢*(N) and S : £2(N) — ¢%(N) the one-sided shift. Show that the
sequence S™ — 0 weakly but not in norm.
(3) It follows from 1, 2 that also A, := S™ and B, := (S*) converge to zero
weakly. Show that A, B,, converges weakly to zero but B, A,, does not.

6. TENSOR PRODUCTS

Let H be an arbitrary Hilbert space. We write L?(T,H) for the set of all functions
(up to measure zero) ¢ : T — H with a finite integral fT|gp(z)|2 dz. Define an inner
product on L?(T,H) and show that

LA (T,H) = L*(T)®H



