INTRODUCTION TO OPEN QUANTUM SYSTEMS EXERCISE SESSION 3

D. GOLUBEV, P. MURATORE-GINANNESCHI, K. SCHWIEGER

Tuesday, 27. Sep.

1. Position and Momentum Representation

Consider the Hilbert space $\mathcal{H}=L^2(\mathbb{T})$ and denote by $F:\ell^2(\mathbb{Z})\to L^2(\mathbb{T})$ the Fourier transform. We consider the position operator

$$Q:L^2(\mathbb{T})\to L^2(\mathbb{T}),\quad (Q\varphi)(z):=z\,\varphi(z).$$

(1) Check that Q is a unitary operator. How does the position operator look like in the Fourier-transformed picture? That is, compute $F^{-1}QF$ explicitly.

The representation of operator on $L^2(\mathbb{T})$ is called *position representation*, the Fourier transformed representation on $\ell^2(\mathbb{Z})$ is called *momentum representation*.

(2) What is the spectrum of Q? (For the answer there is no detailed argument requested, but optionally: Prove that your answer is correct.) For a given subinterval E of the spectrum, what is the corresponding spectral subspace?

2. Momentum Operator on a Circle

As in the previous exercise consider the Hilbert space $\mathcal{H}=L^2(\mathbb{T})$ and the Fourier transform $F:\ell^2(\mathbb{Z})\to L^2(\mathbb{T})$.

- (1) The momentum operator is conveniently defined on $\ell^2(\mathbb{Z})$ by $\tilde{P}(\psi_n)_n := (n \psi_n)_n$ for suitable vectors $(\psi_n)_n \in \ell^2(\mathbb{Z})^1$ What is a dense linear subset of vectors on which P can be defined.
- (2) Show that \tilde{P} is not bounded on your selected subspace.

For the rest of this exercise we ignore possible problems stemming to the fact that \tilde{P} is unbounded.

- (3) What is the spectrum of \tilde{P} and what are corresponding eigenvectors?
- (4) How does the momentum operator look like in position representation? That is, compute $P := F\tilde{P}F^{-1}$. What commutation relations do P and Q satisfy?

3. Orthogonal Projections

Show that for an operator $P \in \mathcal{B}(\mathcal{H})$ the following statements are equivalent:

- (a) P is an orthogonal projection, i. e., $P^2 = P = P^*$.
- (b) $P^2 = P$ and $\ker P \perp P\mathcal{H}$.
- (c) $P = P^*$ and P has spectrum in $\{0, 1\}$.

Optional: Show that the conditions are also equivalent to

(d) $P^2 = P$ and $||P||_{op} \le 1$.

Date: 27.–29. Sep. 2016.

¹Here we consider units in which the Planck constant is normalized to $\hbar = 1$.

Thursday, 29. Sep.

4. Partial Isometries

- (1) Let $V \in \mathcal{B}(\mathcal{H})$ be an operator such that V^*V is a projection. Show that also VV^* is a projection.
 - Hint: A way to proceed is to first show that $P \in \mathcal{B}(\mathcal{H})$ is a projection if $P^* = P$ and $P^3 = P^2$.
- (2) Let $V \in \mathcal{B}(\mathcal{H})$ be a partial isometry. Describe in word in terms of V onto which subspace the projections V^*V and VV^* project.
 - V^*V is called the *initial projection* and VV^* is called the *final projection*.

5. Weak Convergence

For the weak convergence you may wonder what operations are weakly continuous and which are not.

- (1) Let $A_i, A, B \in \mathcal{B}(\mathcal{H})$. Check that, if $A_i \to A$ weakly then $A_i^* \to A$, $BA_i \to BA$, and $A_iB \to AB$ weakly.
- (2) Let $\mathcal{H} = \ell^2(\mathbb{N})$ and $S : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ the one-sided shift. Show that the sequence $S^n \to 0$ weakly but not in norm.
- (3) It follows from 1, 2 that also $A_n := S^n$ and $B_n := (S^*)$ converge to zero weakly. Show that $A_n B_n$ converges weakly to zero but $B_n A_n$ does not.

6. Tensor Products

Let \mathcal{H} be an arbitrary Hilbert space. We write $L^2(\mathbb{T}, \mathcal{H})$ for the set of all functions (up to measure zero) $\varphi : \mathbb{T} \to \mathcal{H}$ with a finite integral $\int_{\mathbb{T}} |\varphi(z)|^2 dz$. Define an inner product on $L^2(\mathbb{T}, \mathcal{H})$ and show that

$$L^2(\mathbb{T},\mathcal{H}) = L^2(\mathbb{T}) \otimes \mathcal{H}$$