Open Quantum Systems: Exercise session 6

Kay Schwieger, Paolo Muratore-Ginanneschi, Dmitry Golubev and Brecht Donvil

November 28, 2016

Exercise 1: Invariance of the Lindblad form

Show that the Lindblad equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \rho(t)=-i[H, \rho(t)]+\sum_{k} \gamma_{k}\left(A_{k} \rho_{S}(t) A_{k}^{\dagger}-\frac{1}{2}\left\{A_{k}^{\dagger} A_{k}, \rho_{S}(t)\right\}\right) \tag{1}
\end{equation*}
$$

is invariant under:

1. Unitary transformations on the effect operators

$$
\begin{equation*}
\sqrt{\gamma_{k}^{\prime}} A_{k}^{\prime}=\sum_{l} u_{k l} \sqrt{\gamma_{l}} A_{l} \tag{2}
\end{equation*}
$$

where the matrix U with entries $u_{i j}$ is a unitary matrix.
2. Transformations of the form

$$
\begin{align*}
A_{k}^{\prime} & =A_{k}+a_{k} \tag{3}\\
H^{\prime} & =H+\frac{1}{2 i} \sum_{j} \gamma_{j}\left(a_{j}^{*} A_{j}-a_{j} A_{j}^{\dagger}\right)+b \tag{4}
\end{align*}
$$

where the a_{i} are complex numbers and b is real.

Exercise 2: Multi-time correlation functions

Suppose we have a density ρ_{0} evolving as $\rho(t)=V(t, 0) \rho_{0}$, with $\frac{\mathrm{d}}{\mathrm{d} t} V(t, 0)=$ $\mathcal{L} V(t, 0)$, and a set of operators B_{i}, such that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle B_{i}(t)\right\rangle=\sum_{j} G_{i j}\left\langle B_{j}(t)\right\rangle \tag{5}
\end{equation*}
$$

with some coefficient matrix $G_{i j}$.
Show that then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \tau}\left\langle B_{i}(t+\tau) B_{l}(t)\right\rangle=\sum_{j} G_{i j}\left\langle B_{i}(t+\tau) B_{l}(t)\right\rangle \tag{6}
\end{equation*}
$$

Hint: remember that $\left\langle B_{i}(t+\tau) B_{l}(t)\right\rangle=\operatorname{tr}\left(B_{i} V(t+\tau, t) B_{l} V(t, 0) \rho_{0}\right)$.

Exercise 3: Qubit

The Lindblad equation, in the interaction picture, of a driven qubit in a radition field is given by

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} \rho(t) & =\frac{i \Omega}{2}\left[\sigma_{+}+\sigma_{-}, \rho(t)\right]+\gamma_{0}(N+1)\left(\sigma_{-} \rho(t) \sigma_{+}-\frac{1}{2}\left\{\sigma_{+} \sigma_{-} \rho(t)\right\}\right) \\
& +\gamma_{0} N\left(\sigma_{+} \rho(t) \sigma_{-}-\frac{1}{2}\left\{\sigma_{-} \sigma_{+} \rho(t)\right\}\right) \tag{7}
\end{align*}
$$

the first term on the rhs is due to the drive.

1. Show that the Bloch vector $\langle\vec{\sigma}(t)\rangle=\left(\left\langle\sigma_{x}(t)\right\rangle,\left\langle\sigma_{y}(t)\right\rangle,\left\langle\sigma_{z}(t)\right\rangle\right)$ satisfies a differential equation of the from

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\langle\vec{\sigma}(t)\rangle=G\langle\vec{\sigma}(t)\rangle+b \tag{8}
\end{equation*}
$$

where G is a matrix and b is a vector. Calculate the stationary solution $\langle\vec{\sigma}\rangle_{s}$.
2. Show that the vector $\langle\langle\vec{\sigma}(t)\rangle\rangle=\langle\vec{\sigma}(t)\rangle-\langle\vec{\sigma}\rangle_{s}$ satisfies the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\langle\langle\vec{\sigma}(t)\rangle\rangle=G\langle\langle\vec{\sigma}(t)\rangle\rangle \tag{9}
\end{equation*}
$$

Use this to find the solution for $\left\langle\sigma_{z}(t)\right\rangle$ in terms of the initial condition $\langle\vec{\sigma}(0)\rangle=\left\langle\vec{\sigma}_{0}\right\rangle$.
3. Find the solution of $\left\langle\sigma_{z}(t) \sigma_{-}(0)\right\rangle_{s}$, with the average taken over the stationary distribution.

Hint: for 3. try to use the result of Exercise 2

