HARMONIC ANALYSIS 2016

9. Homework sheet 24.11.2016

9.1. Homework. Prove Theorem 8.10 paying special attention to the constant c_p . Find an estimate for c_p .

9.2. Homework. Suppose that $f \in L^1_{loc}(\mathbb{R}^n)$ and $1 . Find a value for the constant <math>A_{n,p}$ in the Fefferman-Stein inequality

$$\left| \left| M_{\Delta} f \right| \right|_{L^{p}(\mathbb{R}^{n})} \leq A_{p,n} \left| \left| M_{\Delta}^{\#} f \right| \right|_{L^{p}(\mathbb{R}^{n})}$$

when in the proof for the relative distributional inequality we choose b = 1/2 and $c = 2^{-n-2-p}$.

9.3. Homework. Let $f \in L^p(\mathbb{R}^n)$, 1 . Give an example which shows that the result

$$\left|\left|M_{\Delta}f\right|\right|_{L^{p}(\mathbb{R}^{n})} \leq A_{p,n}\left|\left|M_{\Delta}^{\#}f\right|\right|_{L^{p}(\mathbb{R}^{n})}$$

is stronger than the inequality

$$\left|\left|f\right|\right|_{L^{p}(\mathbb{R}^{n})} \leq C_{p,n}\left|\left|M^{\#}f\right|\right|_{L^{p}(\mathbb{R}^{n})}.$$

9.4. **Homework.** A localized version of the John-Nirenberg inequality which is restricted to dyadic cubes:

Suppose that f is an integrable function on a dyadic cube Q_0 . Suppose that

$$\frac{1}{|Q|} \int_{Q} |f(x) - f_Q| \, dx \le 1$$

holds for all dyadic subcubes $Q \subset Q_0$. Show that there exist positive constant c_1 and c_2 so that for all $\lambda > 0$

$$|\{x \in Q_0 : |f(x) - f_{Q_0}| > \lambda\}| \le c_1 \exp(-c_2 \lambda)|Q_0|.$$

Hint: Apply the relative distributional inequality with $c = 1/\lambda$ for $h(x) = (f - f_{Q_0})\chi_{Q_0}$, noting that $M_{\Delta}^{\#}h(x) \leq 1$. Study the cases $\lambda \geq 2^{n+1}$ and $\lambda \leq 2^{n+1}$ separately.

Date: 18112016/RHS.