REAL-VARIABLE HARMONIC ANALYSIS 1
2016

4. HOMEWORK SHEET
6.10.2016

4.1. Homework. Let 1 < p < co. Suppose that f € LP(R").
If 0 < ap < nand § > 0, show that there is a constant ¢(n,p, ) so
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4.2. Homework. Let 1 < p < co. Suppose that f € LP(R").
If 0 < ap < n show that there is a constant ¢(n, p, «) so that
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Here, p* = np/(n — ap).

Lars-Inge Hedberg (around 1972) proved this inequality using the Hardy-
Littlewood maximal inequality, and the method is called Hedberg’s
method.

4.3. Homework. Let 1 < p < n. Suppose that f € C§°(R"). By
using the previous results prove the Sobolev inequality: there exists a
constant ¢ = ¢(n, p) so that
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4.4. Homework. Show that for cubes_Ql and > from the Whitney
decomposition of Q with the property Q; N Qs # @ the inequalities
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holds.

4.5. Homework. Let ) be a cube from the Whitney decomposition
of Q. Show that there are at most (12)" cubes @’ from the Whitney
decomposition such that

QNQ #0.
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