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Exercise 2
Solutions

1. Problem. Let µ : M → [0,+∞] be a measure defined on a σ-algebra M ⊂ P(X). Define µ∗ : P(X) →
[0,+∞] by setting

µ∗(A) = inf{µ(B) : A ⊂ B ∈M}.
(a) Prove that µ∗ is an outer measure in X.
(b) Prove that every E ∈M is µ∗-measurable and µ∗|M = µ.

Solution. Proof of (a): Clearly µ∗(∅) = 0. Let then

A ⊂
∞⋃
i=1

Ai, A,Ai ∈ P(X).

Let ε > 0. For each i choose Bi ∈M such that Ai ⊂ Bi and

µ∗(Ai) ≥ µ(Bi)− ε/2i.

Then

A ⊂
∞⋃
i=1

Bi ∈M

and

µ∗(A) ≤ µ (∪∞i=1Bi) ≤
∞∑
i=1

µ(Bi)

≤
∞∑
i=1

(
µ∗(Ai) + ε/2i

)
≤
∞∑
i=1

µ∗(Ai) + ε.

This holds for every ε > 0, hence

µ∗(A) ≤
∞∑
i=1

µ∗(Ai),

and therefore µ∗ is an outer measure.
Proof of (b): If E ∈M, then µ(E) ≤ µ(B) for every B ∈M, with E ⊂ B. Hence

µ∗(E) = inf{µ(B) : E ⊂ B ∈M} ≥ µ(E).

On the other hand, µ∗(E) ≤ µ(E), so µ∗(E) = µ(E), and µ∗|M = µ. We claim that every E ∈ M is µ∗-
measurable. [Proof of the claim] Let A ⊂ X be a test set and let ε > 0. Choose B ∈ M such that A ⊂ B
and

µ(B)− ε ≤ µ∗(A) ≤ µ(B).

Then A ∩ E ⊂ B ∩ E ∈M and A \ E ⊂ B \ E ∈M, and therefore

µ∗(A ∩ E) + µ∗(A \ E) ≤ µ(B ∩ E) + µ(B \ E)

E∈M
= µ(B) ≤ µ∗(A) + ε.

This holds for every ε > 0, so

µ∗(A ∩ E) + µ∗(A \ E) ≤ µ∗(A),

and therefore E is µ∗-measurable.

2. Problem. Let m∗ be the Lebesgue outer measure in R, A ⊂ R a non-Lebesgue measurable set, µ̃ = m∗xA,
and

µ = µ̃|{E ⊂ R : E µ̃-measurable}.
Prove that µ is a Radon measure but not Borel regular.
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Solution. Write

M = {B ⊂ R : B on µ̃-mitallinen}.
If B ∈ Leb(R), then for every E ⊂ R we have

µ̃(E) = m∗(E ∩A) = m∗
(
(E ∩A) ∩B

)
+m∗

(
(E ∩A) \B

)
= m∗

(
(E ∩B) ∩A

)
+m∗

(
(E \B) ∩A

)
= µ̃(E ∩B) + µ̃(E \B),

and so B ∈M. Hence Leb(R) ⊂M and, in particular, µ is a Borel measure. The measure µ is clearly locally
finite, and therefore µ is a Rodon measure.

If B ⊂ R \ A, then µ̃(B) = m∗(B ∩ A) = 0. Hence all subsets B ⊂ R \ A are µ̃-measurable. In particular
R \ A ∈ M. We claim that there exists no B ∈ Bor(R) such that R \ A ⊂ B and µ(R \ A) = µ(B). Suppose,
on the contary, that such a set B ∈ Bor(R) exists. Then

A = (A \B) ∪ (A ∩B) = Bc ∪ (A ∩B),

and therefore A ∩B can not be Lebesgue measurable. In particular, m∗(A ∩B) > 0, and so

µ(Ac) = 0 < m∗(A ∩B) = µ(B).

Hence there does not exist a Borel set B such that R \ A ⊂ B and µ(Ac) = µ(B). Therefore, µ is not Borel
regular.

3. Problem. Let (X, τ) be a topological space and A ∈ Bor(X). Equip A with the relative topology τ |A. Prove
that

Bor(A) = Bor(X)|A := {A ∩B : B ∈ Bor(X)}.

Solution. Inclusion ⊂: If U ∈ τ , then U ∈ Bor(X), and therefore U ∩A ∈ Bor(X)|A. Hence τ |A ⊂ Bor(X)|A.
It is easy to see that Bor(X)|A is a σ-algebra in A and since it contains τ |A, we have Bor(A) ⊂ Bor(X)|A.

Inclusion ⊃: Write B = {B ∈ Bor(X) : B ∩ A ∈ Bor(A)}. It suffices to prove that B = Bor(X). Now
τ ⊂ B by the definition of the relative topology τ |A. Hence it is enough to verify that B is a σ-algebra. This
is straightforward to check and we omit it.

4. Problem. Construct a σ-finite Borel measure µ : Bor(R)→ [0,+∞] that is not a Radon measure.

Solution. Define w : R→ R by setting

w(x) =

{
1/x, if x ∈ (0, 1),

0 otherwise

and define µ : Leb(R)→ [0,∞],

µ(E) =

∫
E

w(x) dm(x).

Then µ is a measure and, moreover, it is a Borel measure because Bor(R) ⊂ Leb(R). Now µ
(
R \ (0, 1)

)
= 0

and

µ
(
(1/i, 1)

)
=

∫
(1/i,1)

w(x) dm(x) =

∫ 1

1/i

dx

x
= log i <∞

for i ≥ 2. It follows that µ is σ-finite because

R =
(
R \ (0, 1)

)
∪
∞⋃
i=2

(1/i, 1).

Hence µ is a σ-finite Borel measure. However, it is not a Radon measure because the measure of the compact
set [0, 1] is

µ([0, 1]) =

∫
[0,1]

w(x) dm(x) =

∫ 1

0

dx

x
=∞.

5. Problem. Let X be a separable metric space and Ak ⊂ X, k ∈ N. Prove that

dimH
( ∞⋃
k=1

Ak

)
= sup

k
dimH(Ak).
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Solution. Write A =
⋃∞

k=1Ak.
If B1 ⊂ B2 ⊂ X, then Hs(B1) ≤ Hs(B2) for all s ≥ 0, and so dimH(B1) ≤ dimH(B2). In particular,

dimH(Ak) ≤ dimH(A) for all k, and therefore also supk dimH(Ak) ≤ dimH(A).
If dimH(A) = 0, then supk dimH(Ak) = 0 and we are done. Thus we may assume that dimH(A) > 0. Let

0 < s < dimH(A) so that Hs(A) =∞. Then

∞ = Hs(A) ≤
∞∑
k=1

Hs(Ak)

and, in particular, there exists m ∈ N such that Hs(Am) > 0. Since Hs(Am) > 0, we have dimH(Am) ≥ s,
and therefore supk dimH(Ak) ≥ s. This holds for all 0 < s < dimH(A), hence supk dimH(Ak) ≥ dimH(A).


