Department of Mathematics and Statistics

Geometric measure theory
Exercise 2

Solutions

1. Problem. Let $\mu: \mathcal{M} \rightarrow[0,+\infty]$ be a measure defined on a σ-algebra $\mathcal{M} \subset \mathcal{P}(X)$. Define $\mu^{*}: \mathcal{P}(X) \rightarrow$ $[0,+\infty]$ by setting

$$
\mu^{*}(A)=\inf \{\mu(B): A \subset B \in \mathcal{M}\}
$$

(a) Prove that μ^{*} is an outer measure in X.
(b) Prove that every $E \in \mathcal{M}$ is μ^{*}-measurable and $\mu^{*} \mid \mathcal{M}=\mu$.

Solution. Proof of (a): Clearly $\mu^{*}(\emptyset)=0$. Let then

$$
A \subset \bigcup_{i=1}^{\infty} A_{i}, \quad A, A_{i} \in \mathcal{P}(X)
$$

Let $\epsilon>0$. For each i choose $B_{i} \in \mathcal{M}$ such that $A_{i} \subset B_{i}$ and

$$
\mu^{*}\left(A_{i}\right) \geq \mu\left(B_{i}\right)-\epsilon / 2^{i}
$$

Then

$$
A \subset \bigcup_{i=1}^{\infty} B_{i} \in \mathcal{M}
$$

and

$$
\begin{aligned}
\mu^{*}(A) & \leq \mu\left(\cup_{i=1}^{\infty} B_{i}\right) \leq \sum_{i=1}^{\infty} \mu\left(B_{i}\right) \\
& \leq \sum_{i=1}^{\infty}\left(\mu^{*}\left(A_{i}\right)+\epsilon / 2^{i}\right) \\
& \leq \sum_{i=1}^{\infty} \mu^{*}\left(A_{i}\right)+\epsilon
\end{aligned}
$$

This holds for every $\epsilon>0$, hence

$$
\mu^{*}(A) \leq \sum_{i=1}^{\infty} \mu^{*}\left(A_{i}\right)
$$

and therefore μ^{*} is an outer measure.
Proof of (b): If $E \in \mathcal{M}$, then $\mu(E) \leq \mu(B)$ for every $B \in \mathcal{M}$, with $E \subset B$. Hence

$$
\mu^{*}(E)=\inf \{\mu(B): E \subset B \in \mathcal{M}\} \geq \mu(E)
$$

On the other hand, $\mu^{*}(E) \leq \mu(E)$, so $\mu^{*}(E)=\mu(E)$, and $\mu^{*} \mid \mathcal{M}=\mu$. We claim that every $E \in \mathcal{M}$ is $\mu^{*}-$ measurable. [Proof of the claim] Let $A \subset X$ be a test set and let $\epsilon>0$. Choose $B \in \mathcal{M}$ such that $A \subset B$ and

$$
\mu(B)-\epsilon \leq \mu^{*}(A) \leq \mu(B)
$$

Then $A \cap E \subset B \cap E \in \mathcal{M}$ and $A \backslash E \subset B \backslash E \in \mathcal{M}$, and therefore

$$
\begin{aligned}
\mu^{*}(A \cap E)+\mu^{*}(A \backslash E) & \leq \mu(B \cap E)+\mu(B \backslash E) \\
& E \in \mathcal{M} \\
= & \\
= & B) \leq \mu^{*}(A)+\epsilon .
\end{aligned}
$$

This holds for every $\epsilon>0$, so

$$
\mu^{*}(A \cap E)+\mu^{*}(A \backslash E) \leq \mu^{*}(A)
$$

and therefore E is μ^{*}-measurable.
2. Problem. Let m^{*} be the Lebesgue outer measure in $\mathbb{R}, A \subset \mathbb{R}$ a non-Lebesgue measurable set, $\tilde{\mu}=m^{*}\llcorner A$, and

$$
\mu=\tilde{\mu} \mid\{E \subset \mathbb{R}: E \tilde{\mu} \text {-measurable }\} .
$$

Prove that μ is a Radon measure but not Borel regular.

Solution. Write

$$
\mathcal{M}=\{B \subset \mathbb{R}: B \text { on } \tilde{\mu} \text {-mitallinen }\} .
$$

If $B \in \operatorname{Leb}(\mathbb{R})$, then for every $E \subset \mathbb{R}$ we have

$$
\begin{aligned}
\tilde{\mu}(E) & =m^{*}(E \cap A)=m^{*}((E \cap A) \cap B)+m^{*}((E \cap A) \backslash B) \\
& =m^{*}((E \cap B) \cap A)+m^{*}((E \backslash B) \cap A)=\tilde{\mu}(E \cap B)+\tilde{\mu}(E \backslash B),
\end{aligned}
$$

and so $B \in \mathcal{M}$. Hence $\operatorname{Leb}(\mathbb{R}) \subset \mathcal{M}$ and, in particular, μ is a Borel measure. The measure μ is clearly locally finite, and therefore μ is a Rodon measure.

If $B \subset \mathbb{R} \backslash A$, then $\tilde{\mu}(B)=m^{*}(B \cap A)=0$. Hence all subsets $B \subset \mathbb{R} \backslash A$ are $\tilde{\mu}$-measurable. In particular $\mathbb{R} \backslash A \in \mathcal{M}$. We claim that there exists no $B \in \operatorname{Bor}(\mathbb{R})$ such that $\mathbb{R} \backslash A \subset B$ and $\mu(\mathbb{R} \backslash A)=\mu(B)$. Suppose, on the contary, that such a set $B \in \operatorname{Bor}(\mathbb{R})$ exists. Then

$$
A=(A \backslash B) \cup(A \cap B)=B^{c} \cup(A \cap B),
$$

and therefore $A \cap B$ can not be Lebesgue measurable. In particular, $m^{*}(A \cap B)>0$, and so

$$
\mu\left(A^{c}\right)=0<m^{*}(A \cap B)=\mu(B) .
$$

Hence there does not exist a Borel set B such that $\mathbb{R} \backslash A \subset B$ and $\mu\left(A^{c}\right)=\mu(B)$. Therefore, μ is not Borel regular.
3. Problem. Let (X, τ) be a topological space and $A \in \operatorname{Bor}(X)$. Equip A with the relative topology $\tau \mid A$. Prove that

$$
\operatorname{Bor}(A)=\operatorname{Bor}(X) \mid A:=\{A \cap B: B \in \operatorname{Bor}(X)\}
$$

Solution. Inclusion \subset : If $U \in \tau$, then $U \in \operatorname{Bor}(X)$, and therefore $U \cap A \in \operatorname{Bor}(X) \mid A$. Hence $\tau|A \subset \operatorname{Bor}(X)| A$. It is easy to see that $\operatorname{Bor}(X) \mid A$ is a σ-algebra in A and since it contains $\tau \mid A$, we have $\operatorname{Bor}(A) \subset \operatorname{Bor}(X) \mid A$.

Inclusion $\supset:$ Write $\mathcal{B}=\{B \in \operatorname{Bor}(X): B \cap A \in \operatorname{Bor}(A)\}$. It suffices to prove that $\mathcal{B}=\operatorname{Bor}(X)$. Now $\tau \subset \mathcal{B}$ by the definition of the relative topology $\tau \mid A$. Hence it is enough to verify that \mathcal{B} is a σ-algebra. This is straightforward to check and we omit it.
4. Problem. Construct a σ-finite Borel measure $\mu: \operatorname{Bor}(\mathbb{R}) \rightarrow[0,+\infty]$ that is not a Radon measure.

Solution. Define $w: \mathbb{R} \rightarrow \mathbb{R}$ by setting

$$
w(x)= \begin{cases}1 / x, & \text { if } x \in(0,1) \\ 0 & \text { otherwise }\end{cases}
$$

and define $\mu: \operatorname{Leb}(\mathbb{R}) \rightarrow[0, \infty]$,

$$
\mu(E)=\int_{E} w(x) d m(x)
$$

Then μ is a measure and, moreover, it is a Borel measure because $\operatorname{Bor}(\mathbb{R}) \subset \operatorname{Leb}(\mathbb{R})$. Now $\mu(\mathbb{R} \backslash(0,1))=0$ and

$$
\mu((1 / i, 1))=\int_{(1 / i, 1)} w(x) d m(x)=\int_{1 / i}^{1} \frac{d x}{x}=\log i<\infty
$$

for $i \geq 2$. It follows that μ is σ-finite because

$$
\mathbb{R}=(\mathbb{R} \backslash(0,1)) \cup \bigcup_{i=2}^{\infty}(1 / i, 1)
$$

Hence μ is a σ-finite Borel measure. However, it is not a Radon measure because the measure of the compact set $[0,1]$ is

$$
\mu([0,1])=\int_{[0,1]} w(x) d m(x)=\int_{0}^{1} \frac{d x}{x}=\infty .
$$

5. Problem. Let X be a separable metric space and $A_{k} \subset X, k \in \mathbb{N}$. Prove that

$$
\operatorname{dim}_{\mathcal{H}}\left(\bigcup_{k=1}^{\infty} A_{k}\right)=\sup _{k} \operatorname{dim}_{\mathcal{H}}\left(A_{k}\right)
$$

Solution. Write $A=\bigcup_{k=1}^{\infty} A_{k}$.
If $B_{1} \subset B_{2} \subset X$, then $\mathcal{H}^{s}\left(B_{1}\right) \leq \mathcal{H}^{s}\left(B_{2}\right)$ for all $s \geq 0$, and so $\operatorname{dim}_{\mathcal{H}}\left(B_{1}\right) \leq \operatorname{dim}_{\mathcal{H}}\left(B_{2}\right)$. In particular, $\operatorname{dim}_{\mathcal{H}}\left(A_{k}\right) \leq \operatorname{dim}_{\mathcal{H}}(A)$ for all k, and therefore also $\sup _{k} \operatorname{dim}_{\mathcal{H}}\left(A_{k}\right) \leq \operatorname{dim}_{\mathcal{H}}(A)$.

If $\operatorname{dim}_{\mathcal{H}}(A)=0$, then $\sup _{k} \operatorname{dim}_{\mathcal{H}}\left(A_{k}\right)=0$ and we are done. Thus we may assume that $\operatorname{dim}_{\mathcal{H}}(A)>0$. Let $0<s<\operatorname{dim}_{\mathcal{H}}(A)$ so that $\mathcal{H}^{s}(A)=\infty$. Then

$$
\infty=\mathcal{H}^{s}(A) \leq \sum_{k=1}^{\infty} \mathcal{H}^{s}\left(A_{k}\right)
$$

and, in particular, there exists $m \in \mathbb{N}$ such that $\mathcal{H}^{s}\left(A_{m}\right)>0$. Since $\mathcal{H}^{s}\left(A_{m}\right)>0$, we have $\operatorname{dim}_{\mathcal{H}}\left(A_{m}\right) \geq s$, and therefore $\sup _{k} \operatorname{dim}_{\mathcal{H}}\left(A_{k}\right) \geq s$. This holds for all $0<s<\operatorname{dim}_{\mathcal{H}}(A)$, hence $\sup _{k} \operatorname{dim}_{\mathcal{H}}\left(A_{k}\right) \geq \operatorname{dim}_{\mathcal{H}}(A)$.

