Department of Mathematics and Statistics Geometric measure theory Exercise 2 21.9.2016

1. Let $\mu: \mathcal{M} \to [0, +\infty]$ be a measure defined on a σ -algebra $\mathcal{M} \subset \mathcal{P}(X)$. Define $\mu^*: \mathcal{P}(X) \to [0, +\infty]$ by setting

$$\mu^*(A) = \inf\{\mu(B) \colon A \subset B \in \mathcal{M}\}.$$

- (a) Prove that μ^* is an outer measure in X.
- (b) Prove that every $E \in \mathcal{M}$ is μ^* -measurable and $\mu^* | \mathcal{M} = \mu$.
- 2. Let m^* be the Lebesgue outer measure in \mathbb{R} , $A \subset \mathbb{R}$ a non-Lebesgue measurable set, $\tilde{\mu} = m^* \sqcup A$, and

 $\mu = \tilde{\mu} | \{ E \subset \mathbb{R} \colon E \ \tilde{\mu} \text{-measurable} \}.$

Prove that μ is a Radon measure but not Borel regular.

3. Let (X, τ) be a topological space and $A \in Bor(X)$. Equip A with the relative topology $\tau | A$. Prove that

$$Bor(A) = Bor(X)|A := \{A \cap B \colon B \in Bor(X)\}.$$

- 4. Construct a σ -finite Borel measure $\mu \colon \text{Bor}(\mathbb{R}) \to [0, +\infty]$ that is not a Radon measure.
- 5. Let X be a separable metric space and $A_k \subset X, \ k \in \mathbb{N}$. Prove that

$$\dim_{\mathcal{H}} \left(\bigcup_{k=1} A_k \right) = \sup_k \dim_{\mathcal{H}} (A_k).$$