Department of Mathematics and Statistics Geometric measure theory Exercise 1 14.9.2016

1. Let $\mathcal{F} \subset \mathcal{P}(X)$ and

 $\sigma(\mathcal{F}) = \bigcap \{ \mathcal{M} \colon \mathcal{M} \text{ is a } \sigma \text{-algebra in } X, \, \mathcal{F} \subset \mathcal{M} \}.$

Prove that $\sigma(\mathcal{F})$ is a σ -algebra.

- 2. Prove that every closed subset of a metric space is a \mathcal{G}_{δ} set and every open set (in a metric space) is an \mathcal{F}_{σ} set.
- 3. Let $\tilde{\mu}$ be an outer measure in a metric space X such that every Borel set in X is $\tilde{\mu}$ -measurable (i.e. $\tilde{\mu}$ is a Borel outer measure). Prove that $\tilde{\mu}$ is a metric outer measure.
- 4. Let $\tilde{\mu}$ be a Borel regular outer measure in X and let $A \subset X$ be $\tilde{\mu}$ -measurable such that $\mu(A) < \infty$. Prove that $\tilde{\mu} \sqcup A$ is Borel regular.
- 5. Prove that in Exercise 4
 - (a) the assumption $\tilde{\mu}(A) < \infty$ can be replaced by an assumption $A \in Bor(X)$, but
 - (b) in general, the assumption $\tilde{\mu}(A) < \infty$ is necessary. In other words, construct a topological space X, a Borel regular outer measure $\tilde{\mu}$ in X, an a $\tilde{\mu}$ -measurable subset $A \subset X$ so that $\tilde{\mu} \sqcup A$ is not Borel regular.