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The material is collected mainly from books [EG], [Fe], [LY], [Ma], [Mo], and [Si]
and from the lecture notes ”Currents and varifolds” (fall 2011) by P. Mattila and
”Moderni reaalianalyysi” by I. Holopainen.

The aim of the course is to give an introduction to the theory of varifolds and currents that
are kind of generalized surfaces. They have been used in many geometric variational problems, in
particular, in connections with higher dimensional minimal surfaces.

First we recall some basic notions of geometric measure theory.

1 Review of measure theory

1.1 Measures and outer measures

Let X be a set and let
P(X) = {A : A ⊂ X}

be the power set of X (also denoted by 2X).

Definition 1.2. The collection M ⊂ P(X) is a σ-algebra “sigma algebra”) in X if

(1) ∅ ∈ M;

(2) A ∈ M ⇒ Ac = X \A ∈ M;

(3) Ai ∈ M, i ∈ N ⇒ ⋃∞
i=1Ai ∈ M.

Example 1.3. 1. P(X) is the largest σ-algebra in X;

2. {∅,X} is the smallest σ-algebra in X;

3. Leb(Rn) is the class of Lebesgue measurable sets of Rn.

4. If M is a σ-algebra in X and A ⊂ X, then

M|A = {B ∩A : B ∈ M}
is a σ-algebra in A.

5. If M is a σ-algebra in X and A ∈ M, then

MA = {B ⊂ X : B ∩A ∈ M}

is a σ-algebra in X.

Definition 1.4. If F ⊂ P(X) is a family of subsets of X, then

σ(F) =
⋂

{M : M is a σ-algebra in X, F ⊂ M}

is the σ-algebra generated by F . It is the smallest σ-algebra that contains F .

Example 1.5. Recall that the set I ⊂ Rn is an open n-interval if it is of the form

I = {(x1, . . . , xn) : aj < xj < bj},

where −∞ ≤ aj < bj ≤ +∞. Then

σ({I : I n-interval}) = σ({A : A ⊂ Rn open}) notat.
= Bor(Rn)

is the σ-algebra of Borel sets of Rn. (Can you prove the left side equality?)



4 Geometric Measure Theory

Observe that all open subsets of Rn, closed sets, Gδ sets (countable intersections of open sets),
Fσ sets (countable unions of closed sets), Fσδ sets, Gδσ sets (etc.) are Borel sets. Thus for example
the set of rational numbers Q is Borel.

Remark 1.6. In every topological space X one can define Borel sets as

Bor(X) = σ({A : A ⊂ X open}).

Definition 1.7. Let M be a σ-algebra in X. A mapping µ : M → [0,+∞] is a measure if there
holds:

(i) µ(∅) = 0,

(ii) µ
(⋃∞

i=1Ai
)
=
∑∞

i=1 µ(Ai) if the sets Ai ∈ M are disjoint .

The triple (X,M, µ) is called a measure space and the elements of M measurable sets.

The condition (ii) is called countably additivity . It follows from the definition that a measure is
monotone: If A,B ∈ M and A ⊂ B, then µ(A) ≤ µ(B).

Remark 1.8. 1. If µ(X) <∞, the measure µ is finite.

2. If µ(X) = 1, then µ is a probability measure.

3. If X =
⋃∞
i=1Ai, where µ(Ai) <∞ ∀i, the measure µ is σ-finite. Then we shall say that X is

σ-finite with respect to µ.

4. If A ∈ M and µ(A) = 0, then A is of measure zero.

5. If X is a topological space and Bor(X) ⊂ M (i.e. every Borel set is measurable), then µ is a
Borel measure.

Example 1.9. 1. X = Rn, M = LebRn = the family of Lebesgue measurable sets and µ =
mn = the Lebesgue measure.

2. X = Rn, M = BorRn = the family of Borel sets and µ = mn|BorRn = the restriction of
the Lebesgue measure to the family of Borel sets.

3. Let X 6= ∅ be any set. Fix x ∈ X and set for all A ⊂ X

µ(A) =

{

1, if x ∈ A;

0, if x 6∈ A.

Then µ : P(X) → [0,+∞] is a measure (so called Dirac measure at x ∈ X). We often write
µ = δx.

4. If f : Rn → [0,+∞] is Lebesgue measurable, then µ : Leb(Rn) → [0,+∞],

µ(E) =

∫

E
f(x)dmn(x),

is a measure.
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5. If (X,M, µ) is a measure space and A ∈ M, then the mapping µxA : MA → [0,+∞],

(µxA)(B) = µ(B ∩A),
is a measure. It is called the restriction of µ to A.

Theorem 1.10. Let (X,M, µ) be a measure space and A1, A2, . . . ∈ M.

(a) If A1 ⊂ A2 ⊂ A3 · · · , then

µ
(
∞⋃

i=1

Ai
)
= lim

i→∞
µ(Ai).

(b) If A1 ⊃ A2 ⊃ A3 ⊃ · · · and µ(Ak) <∞ for some k, then

µ
(
∞⋂

i=1

Ai
)
= lim

i→∞
µ(Ai).

Proof. Course ”Mitta ja integraali”.

Definition 1.11. A mapping µ̃ : P(X) → [0,+∞] is an outer measure in X if the following holds:

(i) µ̃(∅) = 0;

(ii) µ̃(A) ≤∑∞
i=1 µ̃(Ai) if A ⊂ ⋃∞

i=1Ai ⊂ X.

Remark 1.12. 1. An outer measure is defined for all subsets of X.

2. Condition (ii) (monotone subadditivity) implies that an outer measure is monotone, i.e.
µ̃(A) ≤ µ̃(B) if A ⊂ B ⊂ X.

3. In many books an outer measure is simply called a measure. (Soon we will do so, too.)

4. Let µ̃ be an outer measure in X and A ⊂ X. Then the restriction of µ̃ to A, defined by

(µ̃xA)(B) = µ̃(B ∩A)
is an outer measure in X.

Every outer measure defines the σ-algebra of “measurable” sets in terms of the Carathéodory
condition.

Definition 1.13. Let µ̃ be an outer measure in X. A set E ⊂ X is µ̃-measurable, or briefly
measurable, if

µ̃(A) = µ̃(A ∩ E) + µ̃(A \ E)

for all A ⊂ X.

Theorem 1.14. Let µ̃ be an outer measure in X and

M = Mµ̃ = {E ⊂ X : E is µ̃-measurable}
Then

(a) M is a σ-algebra and

(b) µ = µ̃|M is a measure (i.e. µ is countably additive).

Proof. Course ”Mitta ja integraali”.

Definition 1.15. We say that an outer measure µ̃ in a topological space X is a Borel outer measure
if every Borel set of X is µ̃-measurable (i.e. if the measure defined by µ̃ is a Borel measure).
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1.16 Metric outer measure

We shall next study the question when an outer measure µ̃ in a topological space X is Borel.

Definition 1.17 (Carathéodory’s criterion). An outer measure µ̃ in a metric space (X, d) is a
metric outer measure if

µ̃(A ∪B) = µ̃(A) + µ̃(B)

for all A,B ⊂ X, for which dist(A,B) = inf{d(a, b) : a ∈ A, b ∈ B} > 0.

Theorem 1.18. An outer measure µ̃ of a metric space (X, d) is a Borel outer measure if and only
if µ̃ is a metric outer measure.

We first formulate and prove the following lemma.

Lemma 1.19. Let µ̃ be a metric outer measure, A ⊂ X and G an open set such that A ⊂ G. If

Ak = {x ∈ A : dist(x,Gc) ≥ 1/k}, k ∈ N,

then µ̃(A) = limk→∞ µ̃(Ak).

Proof. Since G is open, A ⊂ ⋃∞
k=1Ak. Thus A =

⋃∞
k=1Ak. Let

Bk = Ak+1 \ Ak.

Then

A = A2n ∪
(

∞⋃

k=n

B2k

)

∪
(

∞⋃

k=n

B2k+1

)

,

and thus

µ̃(A) ≤ µ̃(A2n) +

∞∑

k=n

µ̃(B2k)

︸ ︷︷ ︸

=(I)

+

∞∑

k=n

µ̃(B2k+1)

︸ ︷︷ ︸

=(II)

.

Let now n→ ∞.
(1) If the sums (I), (II) → 0 as n→ ∞, then

µ̃(A) ≤ lim
n→∞

µ̃(A2n) ≤ µ̃(A)

and the claim is true.
(2) If (I) 6→ 0 as n→ ∞, then

∑

k

µ̃(B2k) = ∞.

On the other hand,

A ⊃ A2n ⊃
n−1⋃

k=1

B2k,

where

dist(B2k, B2k+2) ≥
1

2k + 1
− 1

2k + 2
> 0.

Because µ̃ is a metric outer measure, we have

n−1∑

k=1

µ̃(B2k) = µ̃
(
n−1⋃

k=1

B2k

)
≤ µ̃(A2n) ≤ µ̃(A).
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Letting n→ ∞ we obtain
µ̃(A) = lim

k→∞
µ̃(Ak) = ∞.

The argument goes in the same way if the sum (II) 6→ 0 as n→ ∞.

Proof of Theorem 1.18. Suppose first that µ̃ is a metric outer measure. We want to prove that µ̃
is a Borel outer measure. Because Bor(X) = σ({F : F ⊂ X closed}) and Mµ̃ is a σ-algebra, it is
enough to show that every closed set F ⊂ X is µ̃-measurable.

Let E ⊂ X be an arbitrary test set in the Carathéodory condition. We apply Lemma 1.19 for
the sets A = E \ F and G = X \ F . Let Ak = {x ∈ E \ F : dist(x,Gc) ≥ 1/k}, k ∈ N. Then

dist(Ak, F ) ≥ 1/k

and
lim
k→∞

µ̃(Ak) = µ̃(E \ F ).

Because µ̃ is metric,
µ̃(E) ≥ µ̃

(
(E ∩ F ) ∪Ak

)
= µ̃(E ∩ F ) + µ̃(Ak).

Letting k → ∞ we get
µ̃(E) ≥ µ̃(E ∩ F ) + µ̃(E \ F ).

On the other hand it follows from the monotonicity of the outer measure that

µ̃(E) ≤ µ̃(E ∩ F ) + µ̃(E \ F ).

Thus F is µ̃-measurable and µ̃ is a Borel outer measure.
The proof of the converse implication is left as an exercise.

1.20 Regularity of measures, Radon-measures

Among outer measures particularly useful are those with a large class of measurable sets. Such
outer measures are called regular.

Definition 1.21. We say that an outer measure µ̃ of X is regular if, for every A ⊂ X, there exists
a µ̃-measurable set E such that A ⊂ E and µ(E) = µ̃(A) (such a set E is called a measurable cover
of A.)

Definition 1.22. Let X be a topological space.

(a) We say that an outer measure µ̃ of X is Borel regular if µ is a Borel measure and for every
A ⊂ X there exists a Borel set B ∈ Bor(X) such that A ⊂ B and µ(B) = µ̃(A).

(b) Let (X,M, µ) be a measure space such that Bor(X) ⊂ M (i.e. µ is a Borel measure). Then
the measure µ is called Borel regular if for every A ∈ M there exists B ∈ Bor(X) such that
A ⊂ B and µ(A) = µ(B).

Lemma 1.23. If µ̃ is a Borel regular outer measure in X and A ⊂ X is µ̃-measurable s.t. µ(A) <
∞, then µ̃xA is Borel regular. If A ∈ Bor(X), then the assumption µ(A) <∞ is not needed.

Proof. Exercise.

Theorem 1.24. Let µ̃ be a Borel regular outer measure in a metric space X, A ⊂ X µ̃-measurable
and ε > 0.
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(a) If µ(A) <∞, then there exists a closed set C ⊂ A s.t. µ(A \ C) < ε.

(b) If there exist open sets V1, V2, . . . ⊂ X s.t. A ⊂ ⋃∞
i=1 Vi and µ(Vi) < ∞ ∀i, then there exists

an open set V ⊂ X s.t. A ⊂ V and µ(V \ A) < ε.

Proof. (a): By replacing µ̃ with a Borel regular outer measure µ̃xA (see Lemma 1.23) we may
assume that µ̃(X) <∞. We first prove the claim for Borel sets A. Let

D = {A ⊂ X : ∀ε > 0 ∃ closed C ⊂ A and open V ⊃ A s.t. µ(V \ C) < ε}.

We easily see that D satisfies condition (1) and (2) in the definition of a σ-algebra. Suppose that
A1, A2, . . . ∈ D and let ε > 0. Then there exists closed sets Ci and open sets Vi s.t. Ci ⊂ Ai ⊂ Vi
and µ(Vi \ Ci) < ε/2i. Now V =

⋃

i Vi is open and

µ
(
V \

⋃

i

Ci

︸ ︷︷ ︸

⊂
⋃

i(Vi\Ci)

)
≤
∑

i

µ(Vi \ Ci) < ε.

On the other hand, by Theorem 1.10 (b)

lim
n→∞

µ
(
V \

n⋃

i=1

Ci
)
= µ

(
V \

∞⋃

i=1

Ci
)
,

and hence there exists n s.t.

µ
(
V \

n⋃

i=1

Ci
)
< ε.

Because
⋃n
i=1 Ci is closed, D satisfies also the condition (3) of a σ-algebra. We next show that D

contains closed sets. Let C be closed and

Vi = {x ∈ X : dist(x,C) < 1/i}.

Then Vi is open, V1 ⊃ V2 ⊃ · · · , and C =
⋂

i Vi. Therefore limi→∞ µ(Vi) = µ(C) and limi→∞ µ(Vi \
C) = 0. This implies that C ∈ D. Thus D is a σ-algebra containing all closed sets. In particular,
Bor(X) ⊂ D. Therefore part (a) holds for all Borel sets.

Suppose next that A is µ̃-measurable and µ(A) < ∞. Because µ̃ is Borel regular, there exists
a Borel set B ⊃ A s.t. µ(A) = µ(B). Then µ(B \ A) = 0. Furthermore, there exists a Borel set
D ⊃ B \A s.t. µ(D) = 0. Now E = B \D is Borel, E ⊂ A, and

µ(A \E
︸ ︷︷ ︸

⊂D

) = 0.

Applying the first part of the proof to the Borel set E we conclude that, for each ε > 0, there exists
a closed set C ⊂ E = B \D (⊂ A) s.t. µ(E \ C) < ε. But then

µ(A \ C) ≤ µ(A \ E) + µ(E \ C) < ε,

and hence (a) holds for the set A.
(b) By applying part (a) to the set Vi \ A we obtain closed sets Ci ⊂ Vi \A s.t.

µ(Vi \ A \ Ci) < ε2−i.

Then V =
⋃

i(Vi \ Ci) is open, A ⊂ V and µ(V \A) < ε.
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Remark 1.25. The Borel regularity of the outer measure was not needed to prove claims (a) and
(b) for Borel sets A. Therefore Theorem 1.24 holds for all Borel outer measures, if we, furthermore,
assume that A is Borel.

We also have the following version of Theorem 1.24

Theorem 1.26. Let µ̃ be a Borel regular outer measure in a metric space X and

X =

∞⋃

j=1

Vj ,

where Vj is open and µ(Vj) <∞ for each j ∈ N. Then

(1.27) µ̃(A) = inf{µ(U) : U open, A ⊂ U}

for every A ⊂ X, and

(1.28) µ(A) = sup{µ(C) : C closed, C ⊂ A}

for every µ-measurable A ⊂ X.

So called Radon measures will be important in what follows. These will be defined next. Recall
that a topological space X is locally compact , if every point x ∈ X has a neighbourhood with com-
pact closure. A topological space is Hausdorff , if its distinct points have disjoint neighbourhoods.

Definition 1.29. Let X be a locally compact Hausdorff space. We say that a measure µ is a
Radon measure, if µ is a Borel measure and

(a) µ(K) <∞ for all compact K ⊂ X;

(b) µ(V ) = sup{µ(K) : K ⊂ V compact} for all open V ⊂ X;

(c) µ(B) = inf{µ(V ) : B ⊂ V and V ⊂ X open} for all Borel sets B ∈ Bor(X).

Remark 1.30. 1. In general, a Borel regular measure (in a locally compact Hausdorff space)
need not be a Radon measure.

2. On the other hand a Radon measure need not be Borel regular: Let A ⊂ R be non-Lebesgue
measurable, µ̃ = m∗

xA and

µ = µ̃|{E ⊂ R : E µ̃-measurable}.

Then µ is a Radon measure, but not Borel regular.

In some cases Radon measures can be easily characterised.

Theorem 1.31. Let µ be a Borel measure in Rn. Then µ is a Radon measure, if and only if µ is
locally finite, i.e.

∀x ∈ Rn, µ
(
B(x, r)

)
<∞, when 0 < r < rx.
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Proof. It follows from Definition 1.29 (a) that all Radon measures are locally finite.
Suppose next that µ is locally finite Borel measure in Rn. If K ⊂ Rn is compact, then choose

for every x ∈ K an open ball with centre at x with a finite measure. Because K is compact, it can
be covered with finitely many such balls. Therefore the measure of K is finite and (a) holds.

We next prove conditions (b) and (c) for every Borel set A ⊂ Rn. By applying part (a) of
Theorem 1.24 (see also Remark 1.25) for Borel sets Ai of finite measure,

Ai = A ∩B(0, i), B(0, i) = {x ∈ Rn : |x| ≤ i},

we find closed sets Ci ⊂ Ai s.t.

µ(Ai \ Ci) < 1/i.

Then Ci is a compact set as a closed and bounded set (in Rn). Now

µ(A) ≥ µ(Ai) ≥ µ(Ci) > µ(Ai)− 1/i
1.10(a)−−−−→ µ(A) .

This implies (b). Because A ⊂ ⋃

iB(0, i) and µ(B(0, i)) < ∞, it follows from Theorem 1.24 part
(b) that there exist open sets Vj ⊂ Rn s.t. A ⊂ Vj and µ(Vj \ A) < 1/j. Then

µ(A) ≤ µ(Vj) = µ(A) + µ(Vj \ A) < µ(A) + 1/j,

This implies (c).

Corollary 1.32. Let µ̃ be a locally finite metric outer measure in Rn. Then the measure µ =
µ̃|M, M = {A ⊂ Rn : A µ̃-measurable}, determined by µ̃ is a Radon measure.

Remark 1.33. Theorem 1.31 holds also more generally. For example, if X is a locally compact
metric space, whose topology has a countable base.

Convention: From now on we call an outer measure µ̃ simply a measure and (to simplify the
notation) we denote it by µ.

Note that outer measures and measures come in a sense hand in hand. Indeed, an outer measure
µ̃ : P(X) → [0,+∞] defines the measure µ = µ̃|M, where M is the σ-algebra of µ̃-measurable sets
and, on the other hand, every measure µ : M → [0,+∞] defined on a σ-algebra M ⊂ P(X) can be
extended to an outer measure µ̃ : P(X) → [0,+∞] by setting

µ̃(A) = inf{µ(B) : A ⊂ B ∈ M}.

Let µ be regular and Ai ⊂ Ai+1 ⊂ X for i ∈ N. We have the counterpart of Theorem 1.10 (a)

µ
(
∞⋃

i=1

Ai
)
= lim

i→∞
µ(Ai)

even if the sets Ai are not assumed to be µ-measurable.
Let then X be a locally compact, separable metric space. We say that µ is a Radon (outer)

measure if µ is Borel regular and if µ is finite on compact subsets of X. Then such a measure µ
has the properties

µ(A) = inf{µ(U) : U open, A ⊂ U}
for every A ⊂ X and

µ(A) = sup{µ(K) : K compact,K ⊂ A}
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for every µ-measurable A ⊂ X.
Since µ is finite on compact sets, we can integrate continuous functions with compact support.

In particular, if H is a Hilbert space with inner product (·, ·) and if C0(X,H) denotes the space of
continuous functions X → H with compact support, then associated to each Radon measure µ and
each µ-measurable H-valued function ν : X → H, with |ν| = 1 µ-a.e., we have the linear functional
L : C0(X,H) → R defined by

L(f) =

∫

X
(f, ν) dµ.

The following Riesz representation theorem gives the converse:

Theorem 1.34. Let H be a finite dimensional Hilbert space and let L : C0(X,H) → R be a linear
functional such that

sup{L(f) : f ∈ C0(X,H), |f | ≤ 1, supp f ⊂ K} <∞

for each compact K ⊂ X. Then there exist a Radon measure µ and a µ-measurable mapping
ν : X → H such that |ν(x)| = 1 for µ-a.e. x ∈ X and

L(f) =

∫

X
(f, ν) dµ

for every f ∈ C0(X,H).

We will return to this later.

1.35 Hausdorff measure

The Lebesgue n-dimensional measure mn is well suited for the measurement of the size of “large”
subsets of Rn, but it is too crude for measuring “small” subsets of Rn. For example, m2 cannot
distinguish a singleton of R2 from a line, because both have measure zero.

In this chapter we introduce a whole spectrum of “s-dimensional” measures Hs, 0 ≤ s < ∞,
which are able to see the fine structure of sets, better than the Lebesgue measure. The key idea is
that a set A ⊂ Rn is “s-dimensional”, if 0 < Hs(A) <∞, even if the geometric structure of A were
very complicated.

These measures can be defined in any metric space (X, d). We suppose, however, that X is
separable, i.e. X has a countable dense subset S = {xi}∞i=1, and hence X = S̄. This assumption is
only needed to guarantee that X has so called δ-covering for all δ > 0.

Definition 1.36. 1. The diameter of a nonempty set E ⊂ X is

d(E) = sup
x,y∈E

d(x, y).

2. A countable collection {Ei}∞i=1 of subsets of X is a δ-covering , δ > 0, of A ⊂ X if

A ⊂
∞⋃

i=1

Ei and d(Ei) ≤ δ ∀i ∈ N.

We fix a “dimension” s ∈ [0,∞) and δ > 0. For A ⊂ X, we define

(1.37) Hs
δ(A) = inf

{
ωs

∞∑

i=0

(
d(Ei)/2

)s
: {Ei} is a δ-covering of A

}
,
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where ωs is the volume of the unit ball in Rs in case s is a positive integer and otherwise some
convenient positive constant, and where we make the convention that

(
d({x})/2

)0
= 1 ∀x ∈ X and

(
d(∅)/2

)s
= 0 ∀s ≥ 0.

We readily see from the definition that

Hs
δ1(A) ≥ Hs

δ2(A),

if 0 < δ1 ≤ δ2. Therefore the following limit (1.39) exists and we can set the definition.

Definition 1.38. The s-dimensional Hausdorff (outer) measure of a set A ⊂ X is

(1.39) Hs(A) = lim
δ→0

Hs
δ(A)

(

= sup
δ>0

Hs
δ(A)

)

.

Remark 1.40. The constant ωs above is usually chosen as

ωs =
πs/2

Γ
(
s
2 + 1

) ,

where Γ(t) =
∫∞
0 e−xxt−1 dx, 0 < t <∞, is the usual gamma function.

In particular, this guarantees that Hn and the n-dimensional Lebesgue outer measure m∗
n co-

incide in Rn, i.e.

Hn(A) = m∗
n(A) ∀A ⊂ Rn.

We will not prove this identity. For the proof, see e.g. [Si].

Theorem 1.41. (i) Hs
δ : P(X) → [0,+∞] is an outer measure for all δ > 0.

(ii) Hs : P(X) → [0,+∞] is a metric outer measure.

Proof. (i) (a) Clearly Hs
δ(∅) = 0.

(b) Let then A ⊂ ⋃∞
i=1Ai ⊂ X. We may suppose that Hs

δ(Ai) < ∞ ∀i. Let ε > 0 and
choose for every i a δ-covering {Eij}∞j=1 of the set Ai s.t.

ωs

∞∑

j=1

(
d(Eij)/2

)s ≤ Hs
δ(Ai) + ε2−i.

Then
⋃

i,j E
i
j is a δ-covering of the union

⋃∞
i=1Ai and thus also of A and therefore

Hs
δ(A) ≤ ωs

∑

i,j

(
d(Eij)/2

)s

≤
∞∑

i=1

(
Hs
δ(Ai) + ε2−i

)

≤ ε+
∞∑

i=1

Hs
δ(Ai).

Letting ε→ 0 the desired conclusion follows.
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(ii) Clearly Hs(∅) = 0. If A ⊂ ⋃∞
i=1Ai ⊂ X, then by part (i) and the definition of Hs we obtain

Hs
δ(A) ≤

∞∑

i=1

Hs
δ(Ai) ≤

∞∑

i=1

Hs(Ai).

Letting δ → 0 we see that Hs is an outer measure. Let then A1, A2 ⊂ X be sets, for which
dist(A1, A2) > 0. We wish to show that

Hs(A1 ∪A2) = Hs(A1) +Hs(A2).

It is enough to show that

(1.42) Hs
δ(A1 ∪A2) ≥ Hs

δ(A1) +Hs
δ(A2),

if δ ≤ dist(A1, A2)/3. We may assume that Hs
δ(A1 ∪ A2) < ∞. Let ε > 0 and choose a

δ-covering {Ei}∞i=1 of the set A1 ∪A2 such that

ωs

∞∑

i=1

(
d(Ei)/2

)s ≤ Hs
δ(A1 ∪A2) + ε.

Because δ ≤ dist(A1, A2)/3, every Ei intersects at most one of the sets A1 or A2. Therefore
we may divide the δ-covering {Ei}∞i=1 of A1 ∪A2 into two disjoint δ-coverings of A1 and A2

as

{Ei}∞i=1 = {E′
i}∞i=1 ⊔ {E′′

i }∞i=1,

where

A1 ⊂
∞⋃

i=1

E′
i and A2 ⊂

∞⋃

i=1

E′′
i .

Therefore

Hs
δ(A1) +Hs

δ(A2) ≤ ωs

∞∑

i=1

(
d(E′

i)/2
)s

+ ωs

∞∑

i=1

(
d(E′′

i )/2
)s

= ωs

∞∑

i=1

(
d(Ei)/2

)s

≤ Hs
δ(A1 ∪A2) + ε.

Because ε > 0 was arbitrary, we obtain (1.42).

On the basis of Theorems 1.18 and 1.41 every Borel-set of X is Hs-measurable. We denote the
restriction of Hs to Hs-measurable sets with the same symbol Hs. Now there holds:

Theorem 1.43. Hs is a Borel-measure.

Corollary 1.32 yields now:

Corollary 1.44. If A ⊂ Rn is Hs-measurable and Hs(A) <∞, then Hs
xA is a Radon-measure.

Theorem 1.45. The outer measure Hs of a separable metric space X is Borel-regular.
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Proof. Because by the previous theorem the outer measure defined by Hs is Borel, it is enough to
show that for all A ⊂ X there exists B ∈ Bor(X) s.t. A ⊂ B and Hs(A) = Hs(B).

Let A ⊂ X. If Hs(A) = ∞, we may choose B = X and the claim holds. If Hs(A) < ∞, then
we choose a 1/i-covering {Eij}∞j=1 of A for each i ∈ N s.t.

ωs

∞∑

j=1

(
d(Eij)/2

)s ≤ Hs
1/i(A) + 1/i.

Because d(E) = d(Ē) for all E ⊂ X, we may suppose that the sets Eij are closed. Then

B =

∞⋂

i=1

∞⋃

j=1

Eij

is a Borel set and A ⊂ B. Furthermore, {Eij} is a 1/i-covering of B for all i ∈ N, and hence

Hs
1/i(A) ≤ Hs

1/i(B) ≤ ωs

∞∑

j=1

(
d(Eij)/2

)s ≤ Hs
1/i(A) + 1/i.

Letting i→ ∞ the claim Hs(A) = Hs(B) follows.

Remark 1.46. 1. H0 is the counting measure.

2. Hs
δ is not, in general, a metric outer measure.

3. Roughly speaking H1 ∼ is a length measure, H2 ∼ is area, etc.

4. It is easily seen that (e.g.) the plane R2 is not σ-finite with respect to H1.

1.47 Hausdorff dimension

Let (X, d) be a separable metric space. In this chapter we shall define a dimension for sets A ⊂ X,
which reflects the metric size of the set A. Unlike the topological dimension, this dimension need
not be an integer.

Lemma 1.48. Let A ⊂ X and s ≥ 0.

(i) If Hs(A) <∞, then Ht(A) = 0 for all t > s.

(ii) If Hs(A) > 0, then Ht(A) = ∞ for all 0 ≤ t < s.

Proof. It is enough to prove (i), because the claim (ii) follows from (i). Let δ > 0 and {Ej}∞j=1 be
a δ-covering of A s.t.

ωs

∞∑

j=1

(
d(Ej)/2

)s ≤ Hs
δ(A) + 1 ≤ Hs(A) + 1 <∞.
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Then for all t > s

Ht
δ(A) ≤ ωt

∞∑

j=1

(
d(Ej)/2

)t

= ωt

∞∑

j=1

(
d(Ej)/2

)s(
d(Ej)/2

)t−s

≤ ωt
ωs

(δ/2)t−sωs

∞∑

j=1

(
d(Ej)/2

)s

≤ ωt
ωs

(δ/2)t−s (Hs(A) + 1) .

The claim follows by letting δ → 0.

Definition 1.49. The Hausdorff dimension of a subset A ⊂ X is a number

dimH(A) = inf{s > 0: Hs(A) = 0}.

Summarizing what was said above:

1. If t < dimH(A), then Ht(A) = ∞.

2. If t > dimH(A), then Ht(A) = 0.

In general, about the value Hs(A), for s = dimH(A), we cannot say anything: it can take any value
in [0,∞]. Nevertheless:

(1.50) 0 < Hs(A) <∞ ⇒ dimH(A) = s .

A set A ⊂ X, for which 0 < Hs(A) <∞ holds, is called an s-set .

Lemma 1.51. (i) If A ⊂ B, then dimH(A) ≤ dimH(B).

(ii) If Ak ⊂ X, k ∈ N, then

dimH

(
∞⋃

k=1

Ak
)
= sup

k
dimH(Ak).

Proof. (Exerc.)

Thus, for example, dimH(Q) = 0.

1.52 Hausdorff measures in Rn

Next we evaluate (or rather estimate) Hausdorff measures and dimensions of Cantor type fractal
sets in Rn. To this end we study the invariance properties of Hausdorff measures. There are other,
more efficient, methods for the determination of the Hausdorff dimension but these will not be
discussed in this course.

Recall first that a mapping T : Rn → Rn is an isometry , if

|Tx− Ty| = |x− y| ∀x, y ∈ Rn.
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It is well-known that every isometry of Rn is an affine mapping, i.e. of the form

Tx = a0 + Ux,

where a0 ∈ Rn and U : Rn → Rn is a linear isometry.

In the same way, a mapping R : Rn → Rn is said to be a similarity , if

|Rx−Ry| = c|x− y| ∀x, y ∈ Rn,

where c > 0 is a constant (stretching factor, scaling factor, etc.). Then R is of the form

Rx = a0 + cUx,

where U is again a linear isometry.

Theorem 1.53. Let A ⊂ Rn. For the outer measure Hs, s ≥ 0, there holds:

(a) Hs(A+ x0) = Hs(A) ∀x0 ∈ Rn,

(b) Hs
(
U(A)

)
= Hs(A) for all linear isometries U : Rn → Rn,

(c) Hs
(
R(A)

)
= csHs(A), if R : Rn → Rn is a similarity map, with scaling factor c > 0.

Proof. The claims follow from the observation that d
(
R(E)

)
= c d(E) ∀E ⊂ Rn, where R is as in

part (c).

Let (X, d1) and (Y, d2) be metric spaces. Recall next that the mapping f : X → Y is L-Lipschitz
(with a constant L > 0), if

d2
(
f(x), f(y)

)
≤ Ld1(x, y)

for all x, y ∈ X. In the same way, a mapping g : X → Y is L-bilipschitz , if

1

L
d1(x, y) ≤ d2

(
f(x), f(y)

)
≤ Ld1(x, y)

for all x, y ∈ X. We observe that an L-bilipschitz mapping is always an injection because of the
inequality on the left hand side.

Lemma 1.54. Let (X, d1) and (Y, d2) be separable metric spaces.

(i) If f : X → Y is L-Lipschitz, then

Hs(fA) ≤ LsHs(A) ∀A ⊂ X.

(ii) If g : X → Y is L-bilipschitz, then

dimH(gA) = dimH(A) ∀A ⊂ X.

Proof. (i) We may suppose that Hs(A) <∞. Fix ε > 0, δ > 0 and choose a δ-covering {Ej}∞j=1

of A s.t.

ωs

∞∑

j=1

(
d(Ej)/2

)s ≤ Hs
δ(A) + ε.



Fall 2016 17

Then {f(Ej)}∞j=1 is a Lδ-covering of fA and hence

Hs
Lδ(fA) ≤ ωs

∞∑

j=1

(
d
(
f(Ej)

)
/2
)s

≤ Lsωs

∞∑

j=1

(
d(Ej)/2

)s

≤ Ls(Hs
δ(A) + ε).

The claim follows by letting ε→ 0 and δ → 0.

(ii) Applying part (i) to the mapping g−1 : g(A) → X we obtain

L−sHs(A) ≤ Hs(gA).

Thus
L−sHs(A) ≤ Hs(gA) ≤ LsHs(A),

which yields the claim.

We next construct sets with noninteger Hausdorff dimension. Recall the construction of the
Cantor set from Real Analysis I. (We use slightly different notation and consider only a special
case.)

Let 0 < λ < 1/2. Denote I0,1 = [0, 1], I1,1 = [0, λ] and I1,2 = [1 − λ, 1]. In other words, I1,1
and I1,2 is obtained from I0,1 by removing its middle interval with length 1− 2λ. Next we remove
open interval of length (1 − 2λ)λ from the middle of closed intervals I1,i and continue the process
inductively. Suppose that the intervals In,i, i = 1, . . . , 2n of step n have been defined. Then the
intervals In+1,j, j = 1, . . . , 2n+1 of the step (n + 1) are obtained by removing an open interval of
length (1− 2λ)λn from the middle of the intervals of step n. Thus

d(In,i) = λn, ∀n and ∀i = 1, . . . , 2n.

Denote

Cn(λ) =
2n⋃

i=1

In,i

(“approximation of the nth step”) and

C(λ) =

∞⋂

n=1

Cn(λ).

Then C(λ) is compact, uncountable set, without interior points. Furthermore C(λ) is “selfsimilar”
and m1

(
C(λ)

)
= 0. Cantor’s 1/3-set C(1/3) is a special case of this construction, recurrent in

literature.
I0,1

I1,1 I1,2

I2,1 I2,4

C0

C1

C2

...
...
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Theorem 1.55. For all 0 < λ < 1/2

dimH C(λ) =
log 2

log(1/λ)
.

In particular, dimHC(λ) can attain all values in the interval (0, 1).

Proof. It is enough to show that

(1.56) 2−1−sωs ≤ Hs
(
C(λ)

)
≤ 2−sωs,

if

s =
log 2

log(1/λ)
.

(i) We first give a heuristic argument for finding the exponent s: Clearly

C(λ) = C1 ∪ C2,

where C1 and C2 are disjoint and similar to C(λ) with the scaling factor λ. If C(λ) would
satisfy (1.56), then by part (c) of Theorem 1.53

Hs
(
C(λ)

)
= Hs(C1) +Hs(C2)

= 2λsHs
(
C(λ)

)
.

Thus
1 = 2λs,

Solving this for s yields

s =
log 2

log(1/λ)
.

(ii) A rigorous proof of (1.56): If δ > 0 is given, then choose n ∈ N so large that λn < δ. Then
{In,i}2ni=1 is a δ-covering of C(λ) and, furthermore,

Hs
δ

(
C(λ)

)
≤ ωs

2n∑

i=1

(λn/2)s = 2−sωs

2n∑

i=1

(λn)s = 2−sωs

2n∑

i=1

(1/2)n = 2−sωs.

Thus
Hs
(
C(λ)

)
≤ 2−sωs.

We give a proof for the lower bound (1.56) only in the special case λ = 1/3. The general case
λ ∈ (0, 1/2) would not bring any essential changes to the proof. Suppose that {Ej}∞j=1 is a
δ-covering of C(1/3) such that

ωs

∞∑

j=1

(
d(Ej)/2

)s ≤ Hs
(
C(1/3)

)
+ δ, s =

log 2

log 3
.

For each j choose a closed interval Ij (= [a, b]) s.t. Ej ⊂ int Ij (=]a, b[) and d(Ij) < (1 +
δ)d(Ej). Then {int Ij}∞j=1 is an open covering of C(1/3), and hence by the compactness of
C(1/3) we can choose a finite subcover. By relabelling the intervals Ij , we may suppose that

C(1/3) ⊂
m⋃

j=1

Ij
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and

Hs
(
C(1/3)

)
+ δ ≥ ωs

∞∑

j=1

(
d(Ej)/2

)s

≥ ωs2
−s(1 + δ)−s

m∑

j=1

d(Ij)
s.

To prove the lower bound (1.56) it is enough to prove that

(1.57)

m∑

j=1

d(Ij)
s ≥ 1

2
,

if {Ij}mj=1 is a covering of C(1/3) with finitely many closed intervals Ij . For each j choose
k = k(j) ∈ N, with

(1.58) 3−(k+1) ≤ d(Ij) < 3−k.

Let k0 be the largest one of the numbers k(j), j = 1, . . . ,m. On the basis of the construction
and the choice of the number k = k(j), each Ij can intersect only one of the intervals Ik,i
of step k. Therefore Ij intersects at most 2k0−k(j) of the intervals Ik0,i. Thus the number of
such intervals of step k0 is at most

m∑

j=1

2k0−k(j).

On the other hand, there are 2k0 intervals of step k0. Every one of these contains points of
C(1/3) and C(1/3) ⊂ ⋃mj=1 Ij , and hence

2k0 ≤
m∑

j=1

2k0−k(j).

Now we can compute

2k0 ≤
m∑

j=1

2k0−k(j) = 2k0
m∑

j=1

2−k(j)

= 2k0
m∑

j=1

(3−k(j))s

≤ 2k0
m∑

j=1

(
3d(Ij)

)s
.

Simplification yields
m∑

j=1

d(Ij)
s ≥ 3−s = 1/2.

Remark 1.59. Refining the above argument one can show that

Hs
(
C(λ)

)
= 1, s =

log 2

log(1/λ)
,

(cf. Falconer, K. J.: The geometry of fractal sets, Cambridge University Press, 1985, pages 14-15).
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1.60 Riesz representation theorem

Recall the following general form of the Riesz representation theorem. Let X be a locally compact,
separable metric space, and let H be a finite dimensional Hilbert space with the inner product
(·, ·). Denote by C0(X,H) the space of all continuous mappings X → H with compact support. If
L : C0(X,H) → R is a linear functional such that

sup{L(f) : f ∈ C0(X,H), |f | ≤ 1, supp f ⊂ K} <∞

for all compact K ⊂ X, there exist a Radon measure µ and a µ-measurable ν : X → H such that
|ν(x)| = 1 for ν-a.e. x ∈ X and

L(f) =

∫

X
(f, ν)dµ

for every f ∈ C0(X,H).
See, for example, [Si, Theorem 4.1]. We will consider the special case X = Rn and H = R in

the home work classes.

Definition 1.61. A mapping Λ: C0(R
n,R) → R is a positive linear functional if

(i) Λ(αf1 + βf2) = αΛ(f1) + βΛ(f2) for all f1, f2 ∈ C0(R
n,R) and all α, β ∈ R.

(ii) Λ(f) ≥ 0 for all f ∈ C0(R
n,R), with f(x) ≥ 0 ∀x ∈ Rn.

Theorem 1.62 (Riesz representation theorem). Let Λ: C0(R
n,R) → R be a positive linear

functional. Then there exists a unique Radon measure µ, more precisely, a measure space
(Rn,Bor(Rn), µ), such that

Λ(f) =

∫

Rn

f(x) dµ(x)

for all f ∈ C0(R
n,R).

The proof of Riesz representation theorem is based on an auxiliary result.

Lemma 1.63. (a) Let V ⊂ Rn be open and K ⊂ V compact. Then there exists f ∈ C0(R
n,R)

such that
supp(f) ⊂ V and χK(x) ≤ f(x) ≤ 1 ∀x ∈ Rn.

(b) Let Vj ⊂ Rn, j = 1, . . . ,m, be open and K ⊂ ⋃m
j=1 Vj compact. Then there exist functions

hj ∈ C0(R
n,R), with

0 ≤ hj ≤ 1, supp(hj) ⊂ Vj and χK ≤
m∑

j=1

hj ≤ 1.

1.64 Weak convergence of measures

Definition 1.65. Let µk, k ∈ N, be Radon measures in Rn. We say that a sequence (µk) converges
weakly to a Radon measure a µ, if

lim
k→∞

∫

Rn

f dµk =

∫

Rn

f dµ

all f ∈ C0(R
n,R). This is denoted by µk ⇀ µ or µk

w−→ µ.
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Example 1.66. (i) Let δx be the Dirac measure at x ∈ R. Then δk ⇀ 0.

(ii) Let µk =
1
k

(
δ1/k + δ2/k + · · · + δk/k

)
. Then for all f ∈ C0(R,R)

∫

R

f dµk =

k∑

j=1

1

k
f(j/k)

k→∞−−−→
∫ 1

0
f(x) dx,

because the sums are Riemann sums of the function f on [0, 1]. Thus µk ⇀m1x[0, 1].

Easy examples show that it is not always true that µk(A) → µ(A), if µk ⇀ µ. However, there
holds:

Theorem 1.67. Let µ, µk, k ∈ N, be Radon measures in Rn such that µk ⇀ µ. Then

(a) lim supk→∞ µk(K) ≤ µ(K) if K ⊂ Rn is compact,

(b) lim infk→∞ µk(V ) ≥ µ(V ) if V ⊂ Rn is open.

1.68 Compactness of measures

The weak convergence of measures is not merely natural but also a very useful notion. The families
of bounded Radon measures are sequentially compact. In many cases this is the only way to
construct measures (as limiting measures of weakly convergent sequences).

Theorem 1.69. Let (µk) be a sequence of Radon measures in Rn with

sup
k
µk(K) <∞

for all compact K ⊂ Rn. Then there exists a subsequence (µkj) and a Radon measure µ with

µkj ⇀ µ.

The proof of of this theorem will be discussed in the home work classes.

2 Lipschitz mappings and rectifiable sets

2.1 Extension of Lipschitz mappings

Next we present a useful extension result of Lipschitz mappings.

Theorem 2.2 (McShane-Whitney extension theorem). Let X be a metric space, A ⊂ X, and
f : A→ R L-Lipschitz. Then there exists an L-Lipschitz function F : X → R such that F |A = f .

Proof. For every a ∈ A we define an L-Lipschitz function fa : X → R

fa(x) = f(a) + L|a− x|, x ∈ X.

The function F is then defined by setting

F (x) = inf
a∈A

fa(x), x ∈ X.
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Clearly F (x) <∞ ∀x ∈ X. By fixing a0 ∈ A we see that

f(a) + L|a− x| ≥ f(a) + L|a− a0| − L|a0 − x|
≥ f(a0)− L|a0 − x|.

Hence F (x) > −∞ for all x ∈ X. Since every fa is L-Lipschitz and F (x) > −∞ for all x ∈ X, F
is L-Lipschitz. Moreover, for every x ∈ A

F (x) ≤ fx(x) = f(x) ≤ f(y) + L|x− y| = f y(x) ∀y ∈ A,

and hence F |A = f .

Corollary 2.3. Let X be a metric space, A ⊂ X, and f : A → Rn L-Lipschitz. Then there exists
a
√
nL-Lipschitz mapping F : X → Rn such that F |A = f.

Proof. Apply Theorem 2.2 to the coordinate functions of f .

Remark 2.4. 1. Theorem 2.2 holds (as such) in the case X ⊂ Rm, f : X → Rn, but the proof
is much harder. This is so called Kirzbraun’s theorem.

2. It is a topic of quite active current research to study which pairs of metric spaces X,Y have
a Lipschitz extension property (i.e. for every A ⊂ X every Lipschitz mapping f : A has a
Lipschitz extension F : X → Y ).

2.5 Rademacher’s theorem

According to Rademacher’s theorem a Lipschitz mapping Rn → Rm is differentiable mn-a.e. Let
us first recall the following definition.

Definition 2.6. A mapping f : Rn → Rm is differentiable at x ∈ Rn if there exits a linear mapping
L : Rn → Rm such that

lim
y→x

|f(y)− f(x)− L(y − x)|
|y − x| = 0

or, equivalently,

f(y) = f(x) + L(y − x) + o(|y − x|) as y → x.

If such L exists, it is unique and we denote it by Df(x) and call it the derivative of f at x or the
differential of f at x.

Theorem 2.7 (Rademacher’s theorem). Let f : Rn → Rm be locally Lipschitz, i.e. for each compact
K ⊂ Rn there exist a constant LK <∞ such that

|f(x)− f(y)| ≤ LK |x− y| ∀x, y ∈ K.

Then f is differentiable mn-a.e. in Rn.

The proof will be discussed in home work sessions.
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2.8 Linear maps and Jacobians

Let us start with the following fact: Suppose that L : Rn → Rn is linear. Then

m∗
n(LA) = |detL|m∗

n(A)

for every A ⊂ Rn. We will not prove this formula (think of the special case Lx =
(c1x1, c2x2, . . . , cnxn), where c1, . . . , cn ∈ R). We want to have a counterpart of this ”area for-
mula” in case L : Rn → Rm is linear. Towards this end, let us first recall the following notions
related to linear algebra (without proofs).

Definition 2.9. (i) A linear map O : Rn → Rm is orthogonal if

Ox · Oy = x · y ∀x, y ∈ Rn.

(ii) A linear map S : Rn → Rn is symmetric if

x · Sy = Sx · y ∀x, y ∈ Rn.

(iii) A linear map D : Rn → Rn is diagonal if there are constants d1, . . . , dn such that

Dx = (d1x1, . . . , dnxn) ∀x = (x1, . . . , xn) ∈ Rn.

(iv) The adjoint of a linear map L : Rn → Rm is the linear map L∗ : Rm → Rn defined by

x · L∗y = (Lx) · y ∀x ∈ Rn, y ∈ Rm.

Theorem 2.10. (i) L∗∗ = L.

(ii) (AB)∗ = B∗A∗.

(iii) O∗ = O−1 if O : Rn → Rn is orthogonal.

(iv) S∗ = S if S : Rn → Rn is symmetric.

(v) For every symmetric map S : Rn → Rn there exist an orthogonal map O : Rn → Rn and a
diagonal map D : Rn → Rn such that

S = ODO−1.

(vi) If O : Rn → Rm is orthogonal, then n ≤ m and

O∗O = id in Rn,

OO∗ = id in ORn.

Theorem 2.11 (Polar decomposition). Let L : Rn → Rm be a linear mapping.

(i) If n ≤ m, there exists a symmetric map S : Rn → Rn and an orthogonal map O : Rn → Rm

such that
L = OS.

(ii) If n ≥ m, there a symmetric map S : Rm → Rm and an orthogonal map O : Rm → Rn such
that

L = SO∗.



24 Geometric Measure Theory

For the proof, see e.g. [EG]. We are now ready to define the Jacobian of a linear map L : Rn →
Rm.

Definition 2.12. Let L : Rn → Rm be a linear mapping.

(i) If n ≤ m, let L = OS be as above and define the Jacobian of L as

JLK = |detS|.

(ii) If n ≥ m, let L = SO∗ be as above and define the Jacobian of L as

JLK = |detS|.

Theorem 2.13. (i) If n ≤ m, then JLK2 = det(L∗L).

(ii) If n ≥ m, then JLK2 = det(LL∗).

(iii) JLK = JL∗K.

Remark 2.14. The Jacobian JLK is well-defined since it is independent of the choices of S and O
by Theorem 2.13.

2.15 Jacobians of Lipschitz mappings

Let f = (f1, . . . , fm) : R
n → Rm be a Lipschitz mapping. By Rademacher’s theorem, f is differen-

tiable at mn-a.e. x ∈ Rn. Hence the derivative Df(x) exists and can be expressed as a matrix

Df(x) =






∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

...
...

...
∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn






at mn-a.e. x ∈ Rn.

Definition 2.16. The Jacobian of f at a point x, where f is differentiable, is

Jf (x) = JDf(x)K.

2.17 The area formula

Some details will be discussed in the home work classes.
In this subsection we assume that n ≤ m and that f : Rn → Rm is Lipschitz.

Lemma 2.18 (Area formula for linear maps). Let L : Rn → Rm, n ≤ m, be a linear map. Then

Hn(LA) = JLKm∗
n(A) ∀A ⊂ Rn.

Note that we have defined Hn so that Hn = m∗
n in Rn.

Lemma 2.19. Let A ⊂ Rn be Lebesgue measurable. Then

(i) fA is Hn-measurable,

(ii) the mapping y 7→ H0
(
A ∩ f−1(y)

)
is Hn-measurable, and
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(iii)
∫

Rm

H0
(
A ∩ f−1(y)

)
dHn(y) ≤

(
Lip(f)

)n
mn(A).

Lemma 2.20. Let t > 1 and B = {x ∈ Rn : the derivative Df(x) exists and Jf (x) > 0}. Then
there exists a countable collection Ek ∈ Bor(Rn), k ∈ N, such that

(i)

B =
∞⋃

k=1

Ek,

(ii) f |Ek is one-to-one,

(iii) for every k ∈ N there exists a symmetric automorphism Tk : R
n → Rn such that

Lip
(
(f |Ek) ◦ T−1

k

)
≤ t,

Lip
(
Tk ◦ (f |Ek)−1

)
≤ t,

t−n|detTk| ≤ Jf |Ek
≤ tn|detTk|.

The message of the lemma is that f can be locally approximated by a symmetric automorphism
as closely as we wish.

Theorem 2.21 (The area formula). Let f : Rn → Rm, n ≤ m, be a Lipschitz mapping. Then for
every mn-measurable set A ⊂ Rn

∫

A
Jf (x)dmn(x) =

∫

Rm

H0
(
A ∩ f−1(y)

)
dHn(y).

Corollary 2.22 (Change of variables). Let f : Rn → Rm be a Lipschitz map, n ≤ m. Then for
each mn-integrable g : R

n → R

∫

Rn

g(x)Jf (x)dmn(x) =

∫

Rm




∑

x∈f−1(y)

g(x)



 dHn(y).

As an application let us consider the surface area (measure) of the graph of a Lipschitz function

g : Rn → R. Define f : Rn → Rn+1, f(x) =

(

x, g(x)
)
. Then

Df =











1 0 · · · 0 0

0 1 0 · · · ...
... 0 0
0 0 · · · 0 1
∂g
∂x1

∂g
∂x2

· · · · · · ∂g
∂xn











=

(
In
∇g

)

and J2
f = 1 + |∇g|2. For each open U ⊂ Rn, the graph of g over U is

Γ = Γg,U = {(x, g(x)) : x ∈ U}

and

Hn(Γ) =

∫

U

√

1 + |∇g|2dmn(x).
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2.23 The co-area formula

In this subsection we assume that n ≥ m. Some details will be discussed in home work classes.
Let us start with linear maps L : Rn → Rm, n ≥ m. Consider first the special case where

L : Rn = Rm × Rk → Rm is the orthogonal projection onto Rm,

L(x1, . . . , xm, xm+1, . . . , xm+k) = (x1, . . . , xm).

Then for each y ∈ Rm the preimage L−1(y) is an affine (n−m)-dimensional subspace. The preimages
L−1(y), y ∈ Rm, decompose Rn into parallel (n−m)-dimensional slices. By Fubini’s theorem

∫

Rm

Hn−m
(
L−1(y) ∩A

)
dmm(y) = Hn(A) = mn(A)

whenever A ⊂ Rn is Lebesgue measurable. For a general linear map L : Rn → Rm, n ≥ m, we have
the following.

Lemma 2.24. Let L : Rn → Rm, n ≥ m, be a linear mapping and A ⊂ Rn Lebesgue measurable.
Then

(i) the mapping y 7→ Hn−m
(
A ∩ L−1(y)

)
is mm-measurable, and

(ii)
∫

Rm

Hn−m
(
A ∩ L−1(y)

)
dmm(y) = JLKmn(A).

Similarly to the case of area formula, we have:

Lemma 2.25. Let f : Rn → Rm, n ≥ m, be a Lipschitz mapping and A ⊂ Rn Lebesgue measurable.
Then

(i) fA is mm-measurable,

(ii) A ∩ f−1(y) is Hn−m-measurable for mm-a.e. y ∈ Rm,

(iii) the mapping y 7→ Hn−m
(
A ∩ f−1(y)

)
is mm-measurable, and

(iv)
∫

Rm

Hn−m
(
A ∩ f−1(y)

)
dmm(y) ≤

ωn−mωm
ωn

(Lip f)mmn(A).

Lemma 2.26. Let t > 1 and h : Rn → Rn Lipschitz. Let

B = {x ∈ Rn : Dh(x) exists and Jh(x) > 0}.

Then there exists a countable collection Dk ∈ Bor(Rn), k ∈ N, such that

(i) mn

(
B \ ∪kDk

)
= 0,

(ii) h|Dk is one-to-one, and

(iii) for each k there exists a symmetric automorphism Sk : R
n → Rn such that

Lip
(
S−1
k ◦ (h|Dk)

)
≤ t,

Lip
(
(h|Dk)

−1 ◦ Sk
)
≤ t,

t−n|detSk| ≤ Jh|Ek
≤ tn|detSk|.
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Note that above both the domain and the target of h is Rn. For the proof of Lemma 2.26 we
apply Lemma 2.20 to find sets Ek such that each h|Ek is one-to-one and then we apply Lemma 2.20
again to (h|Ek)−1 in hEk.

Theorem 2.27 (The co-area formula). Let f : Rn → Rm, n ≥ m, be a Lipschitz map. Then for
each mn-measurable set A ⊂ Rn

∫

A
Jf (x)dmn(x) =

∫

Rm

Hn−m
(
A ∩ f−1(y)

)
dmm(y).

Corollary 2.28 (Change of variables). Let f : Rn → Rm, n ≥ m, be a Lipschitz mapping. Then
for each mn-integrable function g : Rn → R, g|f−1(y) is Hn−m-integrable for mm-a.e. y ∈ Rm and

∫

Rn

g(x)Jf (x)dmn(x) =

∫

Rm

(
∫

f−1(y)
gdHn−m

)

dmm(y).

As an application we consider level sets of a Lipschitz function f : Rn → R. Then Jf = |∇f |
and hence ∫

Rn

|∇f |dmn =

∫ ∞

−∞
Hn−1

(
{f = t}

)
dt.

2.29 Rectifiable sets

Let us start with the following two examples

Example 2.30. Let J0 = Q0
1 = [0, 1]2 be the closed unit square of the plane and let J1 be the

union of four closed squares Q1
i , i = 1, . . . , 4 , in its corners, each with edge length 1/4. In the

next step each of the four squares Q1
i , i = 1, . . . , 4 of J1, will be replaced with four corner squares

Q2
j , j = 1, . . . , 16, each with edge length 1/16. Continuing in this way in the step n we have 4n

squares Qnj , j = 1, . . . , 4n, each with egde length 4−n. Let

Jn =
4n⋃

j=1

Qnj

and

J =

∞⋂

n=0

Jn.

Then J is a set of Cantor type. In fact, J = C(1/4)× C(1/4).

J0 J1 J2

J3

Q0
1

Q1
1 Q1

2

Q1
3 Q1

4 Q2
j

Q3
i · · · · · ·
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What is the Hausdorff dimension dimH J of J? We find a suitable candidate for dimH J by using
similarities. Observe that

J =

4⊔

i=1

J̃i,

where J̃i is similar to J with the scaling factor 1/4, and hence Hs(J̃i) = (1/4)sHs(J) and further

Hs(J) = 4(1/4)sHs(J).

If J is an s-set (i.e. 0 < Hs(J) <∞), then we get from above that

4(1/4)s = 1

which gives s = 1. Let us give some further details. Fix δ > 0. Observe first that d(Qnj ) =
√
2/4n.

If n ∈ N is so large that
√
2/4n ≤ δ, then {Qnj }4

n

j=1 is a δ-covering of J and thus

H1
δ(J) ≤

4n∑

j=1

d(Qnj ) ≤ 4n
√
2/4n =

√
2.

Therefore H1(J) ≤
√
2 <∞. By an argument similar to that in the proof of Theorem 1.55 one can

show that H1(J) > 0. Thus

dimH(J) = 1 and 0 < H1(J) <∞,

in other words J is a 1-set. However, its geometric structure is very different from that of a
rectifiable curve.

Remark.: A positive lower bound can also be found by using an orthogonal projection P : R2 →
S onto a line S with slope −2. Then the image set P (J) is a segment with length 3/

√
5. Because

the projection P is 1-Lipschitz, then H1(J) ≥ H1(P (J)) = 3/
√
5. In fact, it can be shown that

H1(J) =
√
2.

P (J)

It was pointed out above that J = C(1/4) × C(1/4). Observe that dimH(J) = 1 = 2 log 2/ log 4 =
dimHC(1/4) + dimH C(1/4).

Example 2.31. Let q1, q2, . . . be those points of the closed unit disk D̄ = {x ∈ R2 : |x| ≤ 1} whose
both coordinates are rational numbers. These points form a countable dense subset of D̄. Let

E =

∞⋃

j=1

Sj,
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where
Sj = {x ∈ R2 : |x− qj| = 2−j}.

Now

0 < H1(E) ≤
∞∑

j=1

2π 2−j = 2π <∞.

Thus E is a 1-set and dimHE = 1. However, E is dense in D̄, Ē ∩ D̄ = D̄, and therefore E is “very
big”. In which sense does E resemble a rectifiable arc?

These and other similar examples raise several questions:

• In which sense the Cantor-set of Example 2.30 is different from a rectifiable arc?

• What kind of set is a general 1-set? Is there a way to distinguish between “Cantor-type” and
“rectifiable” parts and how these parts could be defined?

• Rectifiable arcs have tangent lines a.e. Does this property have a counterpart for sets such
as in Example 2.31?

Recall Lebesgue’s density theorem from Real Analysis I: If E ∈ Leb(Rn), then

lim
r→0+

mn(E ∩B(x, r))

mn(B(x, r))
= 1

for a.e. x ∈ E. It is a natural question whether Hausdorff measures have some similar properties.
Recall that we defined the Hausdorff measure so that Hn(B̄(x, 1)) = ωn for B(x, r) ⊂ Rn. Keeping
this in mind we define:

Definition 2.32. Let 0 ≤ s < ∞, A ⊂ Rn and a ∈ Rn. The upper and lower s-densities of A at
the point a are

Θ∗s(A, a) = lim sup
r→0+

Hs(A ∩ B̄(a, r))

ωsrs
,

Θs
∗(A, a) = lim inf

r→0+

Hs(A ∩ B̄(a, r))

ωsrs
.

If Θs
∗(A, a) = Θ∗s(A, a), then this value is called the (s-dimensional) density of A at a and denoted

by Θs(A, a).

We study densities using covering theorems. Recall from Real Analysis I the following basic
covering theorem and the notion of a Vitali covering of a set. If B is an open (closed) ball centered
at x with radius r, then 5B is an open (closed) ball centered at x with radius 5r.

Theorem 2.33 (Basic covering theorem). Let F be an arbitrary family of balls of Rn s.t.

D = sup{d(B) : B ∈ F} <∞.

Then there exists a countable (possibly finite) family G ⊂ F s.t.

Bi ∩Bj = ∅ ∀Bi, Bj ∈ G, Bi 6= Bj , i.e. the balls of G are disjoint; and
⋃

B∈F

B ⊂
⋃

B∈G

5B .
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Definition 2.34. Let V be a family of balls in Rn. We say that V is a Vitali covering of a set
E ⊂ Rn if for every x ∈ E and every ε > 0 there exists B ∈ V s.t. x ∈ B and d(B) < ε. The family
V is a closed (open) Vitali covering if every B ∈ V is closed (open) ball.

Theorem 2.35 (Vitali’s covering theorem for Hausdorff measures). Let 0 < s <∞ and let V be a
closed Vitali covering of a set E ⊂ Rn. Then there exists a countable family of disjoint balls Bi ∈ V
s.t. either

(2.36)
∑

i=1

d(Bi)
s = ∞

or

(2.37) Hs
(
E \

⋃

i=1

Bi
)
= 0.

Remark 2.38. Applying so called Besicovitch’s covering theorem we obtain a counterpart of
Theorem 2.35 for a general Radon-measure of Rn (see Theorems ??, ??).

Proof. We may suppose that 0 < d(B) < 1 for all B ∈ V. We choose the balls inductively: Let
B1 ∈ V be arbitrary. Suppose that disjoint balls B1, . . . , Bm ∈ V have been chosen. Let

dm = sup{d(B) : B ∈ V, B ∩Bi = ∅ ∀1 ≤ i ≤ m}.

If dm = 0, then

E ⊂
m⋃

i=1

Bi,

and the claim is proven ((2.37) holds). Indeed, if there exists x ∈ E \ ∪mi=1Bi, then

dist(x,∪mi=1Bi) > 0,

because ∪mi=1Bi is compact. Because V is a Vitali covering of E, there would exist B ∈ V s.t. x ∈ B
and B ∩ ∪mi=1Bi = ∅ and therefore dm > 0.

If dm > 0, then choose Bm+1 ∈ V such that d(Bm+1) > dm/2. If this selection process will not
end for any m, we obtain disjoint balls {Bi}∞i=1 ⊂ V. Therefore we must show: If

∞∑

i=1

d(Bi)
s <∞,

then the condition (2.37) holds. For this purpose we show first that

(2.39) E \
k⋃

i=1

Bi ⊂
∞⋃

j=k+1

5Bj ∀k ∈ N.

Indeed, if

x ∈ E \
k⋃

i=1

Bi,

then x ∈ B̃ ∈ V, where B̃ ∩ Bi = ∅ for all 1 ≤ j ≤ k. Because d(Bm) → 0 as m → ∞, then
d(B̃) > 2d(Bm+1) for some m. Then B̃ must intersect one of the sets Bk+1, . . . , Bm, because
otherwise

dm ≥ d(B̃) > 2d(Bm+1) > dm.
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Let Bj be the first one of the balls Bk+1, . . . , Bm, which B̃ intersects. Then

B̃ ∩Bj 6= ∅, d(Bj) > dj−1/2 ≥ d(B̃)/2 and k + 1 ≤ j ≤ m.

Thus B̃ ⊂ 5Bj and (2.39) holds.

B̃

Bj

Finally let δ > 0. When k is large enough, then d(5Bj) ≤ δ for all j ≥ k. Thus

Hs
δ

(
E \

∞⋃

i=1

Bi
)
≤ Hs

δ

(
E \

k⋃

i=1

Bi
)

≤ Hs
δ

(
∞⋃

j=k+1

5Bj
)

≤ ωs2
−s

∞∑

j=k+1

d(5Bj)
s

= ωs(5/2)
s

∞∑

j=k+1

d(Bj)
s → 0

as k → ∞. Thus

Hs
δ

(
E \

∞⋃

i=1

Bi
)
= 0

for all δ > 0 and (2.37) holds.

The next theorem is useful when studying local properties of s-sets.

Theorem 2.40. Let 0 < s <∞, A ⊂ Rn, and Hs(A) <∞.

(a) 2−s ≤ Θ∗s(A, a) ≤ 1 for Hs-a.e. a ∈ A.

(b) If A is Hs-measurable, then Θ∗s(A, a) = 0 Hs-a.e. a ∈ Rn \A .

Remark 2.41. 1. The lower density Θs
∗(A, a) could be zero for every a ∈ Rn even if Hs(A) > 0;

see [Ma, Exerc. 2, p. 99 and 4.12].

2. The upper bound 1 in (a) is sharp for all s > 0. The lower bound 2−s is sharp for 0 < s ≤ 1,
but it is not known whether it is sharp for s > 1; see [Ma, 6.4 (2)].

Proof. We first prove the left inequality of part (a). Observe first that

{x ∈ A : Θ∗s(A, x) < 2−s} =
∞⋃

k=1

{x ∈ A : Hs(A ∩ B̄(x, r)) < 2−sωs(1− 1/k)rs ∀ 0 < r < 1/k}
︸ ︷︷ ︸

=Ck
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and then show that Hs(Ck) = 0 for all k ∈ N. Fix k ∈ N, ε > 0, and denote C = Ck. Cover C
with the sets Ej , j ∈ N, s.t. 0 < d(Ej) < 1/k, C ∩ Ej 6= ∅, and

2−sωs

∞∑

j=1

d(Ej)
s ≤ Hs(C) + ε.

For every j choose xj ∈ C ∩ Ej and denote rj = d(Ej). Because C ∩ Ej ⊂ A ∩ B̄(xj , rj), then

Hs(C) ≤
∞∑

j=1

Hs(C ∩ Ej)

≤
∞∑

j=1

Hs(A ∩ B̄(xj , rj))

≤ 2−sωs

∞∑

j=1

(1− 1/k)rsj

= 2−sωs(1− 1/k)

∞∑

j=1

d(Ej)
s

≤ (1− 1/k)(Hs(C) + ε).

Letting ε→ 0 we see that Hs(C) = 0, because 1− 1/k < 1 and Hs(C) <∞.
We next prove the right hand side inequality of part (a). Because Hs is a Borel regular (outer

measure), we may suppose that A is a Borel set. Then Corollary 1.44 shows that Hs
xA is a Radon

measure.
For t > 1, let

E = {x ∈ A : Θ∗s(A, x) > t}.
We wish to show that Hs(E) = 0. Let δ > 0 and ε > 0. Because Hs

xA is a Radon measure, there
exists an open set U ⊂ Rn s.t. E ⊂ U and

Hs(A ∩ U) < Hs(E) + ε.

For every x ∈ E there exists a radius rx < δ/2, for which B(x, rx) ⊂ U and a sequence of radii
ri < rx, ri → 0, s.t.

(2.42) Hs(A ∩ B̄(x, ri)) > tωsr
s
i ∀i ∈ N.

(Note that the sequence ri depends on x hence ri = ri(x).) Next we apply Vitali’s covering theorem
to the Vitali covering V = {B̄(x, ri) : x ∈ E, i ∈ N} of E. Therefore there exist disjoint closed balls
{Bj} ⊂ V s.t.

(2.43) Hs(E \ ∪jBj) = 0.

Note that by (2.42)

tωs2
−s
∑

j

d(Bj)
s ≤

∑

j

Hs(A ∩Bj) ≤ Hs(A ∩ U) ≤ Hs(E) + ε <∞,

and therefore the option (2.36) does not hold and, consequently, (2.43) follows. Hence

Hs(E) + ε ≥ t2−sωs
∑

j

d(Bj)
s ≥ tHs

δ(E ∩ ∪jBj) ≥ tHs
δ(E),
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where the last inequality follows from (2.43) and the subadditivity of Hs
δ. Letting ε→ 0 and δ → 0,

we obtain tHs(E) ≤ Hs(E) <∞. Therefore Hs(E) = 0, because t > 1.
Finally we prove (b): Let t > 0 and

B = {x ∈ Rn \ A : Θ∗s(A, x) > t}.

We prove that Hs(B) = 0. Fix δ > 0 and ε > 0. We apply part (b) of Theorem 1.24 to the Borel
regular outer measure Hs

xA (see Lemma 1.23). Because (Hs
xA)(B) = 0, then by 1.24 there exists

an open U ⊂ Rn s.t. B ⊂ U and Hs(A∩U) < ε. For every x ∈ B there exists a radius 0 < r(x) < δ
s.t. B̄(x, r(x)) ⊂ U and

Hs
(
A ∩ B̄(x, r(x))

)
> tωs

(
r(x)

)s
.

From the basic covering theorem 2.33 it follows that there exist (countably many) disjoint balls
Bi = B̄(xi, r(xi)) s.t. B ⊂ ∪i5Bi. Thus

tHs
10δ(B) ≤ t2−sωs

∑

i

d(5Bi)
s

= 5st2−sωs
∑

i

d(Bi)
s

≤ 5s
∑

i

Hs(A ∩Bi)

≤ 5sHs(A ∩ U)

≤ 5sε.

Letting ε→ 0 we see that Hs
10δ(B) = 0, which implies further that Hs(B) = 0 as δ → 0.

Corollary 2.44. Let A,B ⊂ Rn be Hs-measurable s.t. B ⊂ A and Hs(A) <∞. Then for Hs-a.e.
x ∈ B there holds:

Θ∗s(A, x) = Θ∗s(B,x) and Θs
∗(A, x) = Θs

∗(B,x).

Proof.
Hs
(
A ∩ B̄(x, r)

)

ωsrs
=

Hs
(
(A \B) ∩ B̄(x, r)

)

ωsrs
︸ ︷︷ ︸

r→0+−−−−→0 Hs-a.e. x∈B

+
Hs
(
B ∩ B̄(x, r)

)

ωsrs
.

Definition 2.45. A set E ⊂ Rn is m-rectifiable, m ∈ N, if Hm(E) <∞ and there exists Lipschitz
maps fi : R

m → Rn, i ∈ N, such that

Hm

(

E \
⋃

i

fiR
m

)

= 0.

Usually the finiteness of Hs(E) is not required, in which case E is called countably m-rectifiable.
By the McShane-Whitney extension theorem 2.2 it is equivalent to say that

Hm

(

E \
⋃

i

fiAi

)

= 0,

where Ai ⊂ Rm and fi : Ai → Rn are Lipschitz. More importantly, by applying Rademacher’s
theorem and (a consequence of) Whitney’s extension theorem, we have
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Lemma 2.46. Let E ⊂ Rn be a Hm-measurable, with Hm(E) <∞. Then E is m-rectifiable if and
only if there exist m-dimensional C1-smooth submanifolds Mi ⊂ Rn, i ∈ N, such that

Hm

(

E \
⋃

i

Mi

)

= 0.

Definition 2.47. A set P ⊂ Rn is purely m-unrectifiable if

Hm(P ∩R) = 0

for all m-rectifiable R ⊂ Rn.

Remark 2.48. The set E in Example 2.31 is 1-rectifiable whereas the set J in Example 2.30 is
purely 1-unrectifiable.

Theorem 2.49. Let E ⊂ Rn be Hm-measurable, with Hm(E) <∞ (and m ∈ N). Then there exist
Hm-measurable sets P and R such that R is m-rectifiable, P is purely m-unrectifiable,

E = R ∪ P and R ∩ P = ∅.

Proof. Set M = sup{Hm(R) : R ⊂ E, R is m-rectifiable}. For each i ∈ N, choose an m-rectifiable
set Ri such that

Hm(Ri) > M − 1/i.

Then we can choose R = ∪iRi and P = E \R.

For m,n ∈ N, with m < n, let G(n,m) denote the (Grassmannian) space of all m-dimensional
(vector) subspaces of Rn.

Definition 2.50. We say that V ∈ G(n,m) is an approximate tangent space of E ⊂ Rn at a ∈ Rn

if

Θ∗m(E, a) > 0

and for all δ > 0

lim
r→0

1

rm
Hm

(
{x ∈ E ∩ B̄(a, r) : dist(x− a, V ) > δ|x− a|}

)
= 0.

If such a space exists, we denote it by TaE or Tma E.

Remark 2.51. (a) For V ∈ G(n,m), a ∈ Rn, and δ > 0 let

V C
a,δ = {x ∈ Rn : dist(x− a, V ) > δ|x− a|}.

We then notice that V = Tma E if and only if Θ∗m(E, a) > 0 and Θ∗m(E ∩ V C
a,δ, a) = 0 for all

1 > δ > 0. Note that V C
a,δ = ∅ for δ ≥ 1 since dist(x− a, V ) ≤ |x− a|.

(b) If m = 1, the approximate tangent line T 1
aE is unique if exists, but for m ≥ 2 Tma E need

not be unique. However, for Hm-measurable sets E, with Hm(E) < ∞ and m ≥ 2, the
approximate tangent space Tma E is unique at Hm-a.e. point a ∈ E where such a space exists.
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(c) The definition above differs from (and is weaker than) that in [LY, 3.3.3] or [Si, 11.2] where
V ∈ G(n,m) is said to be the approximate tangent space of an Hm-measurable subset E ⊂ Rn

(with Hm(E ∩K) <∞ for every compact K ⊂ Rn) at a ∈ Rn if

lim
λ→0+

∫

ηa,λ(E)
f(y)dHm(y) =

∫

V
f(y)dHm(y) ∀f ∈ C0(R

n),

where ηa,λ : R
n → Rn is defined as ηa,λ(y) = (y − a)/λ for a, y ∈ Rn, λ > 0.

From Corollary 2.44 (see also Remark 2.51 (a)) we get:

Theorem 2.52. Let A ⊂ B ⊂ Rn be Hm-measurable with Hm(B) <∞. Then for Hm-a.e. x ∈ A,
Tmx A exists if and only if Tmx B exists. Furthermore, if exist, they are equal Hm-a.e.

In particular, if E is m-rectifiable and Mi’s are m-dimensional C1-submanifolds as in
Lemma 2.46, then at Hm-a.e. x ∈ E ∩Mi the approximate tangent space of E is the same as
the usual tangent space of Mi.

The following theorem characterizes rectifiable sets in terms of approximate tangent spaces; see
[Ma, Chapter 15]. (This might be discussed in the home work classes.)

Theorem 2.53. Let E ⊂ Rn be Hm-measurable with Hm(E) <∞. Then E is m-rectifiable if and
only if E has the approximate tangent space TaE ∈ G(n,m) for Hm-a.e. a ∈ E.

As a corollary, we have a characterization of purely unrectifiability.

Lemma 2.54. Let E ⊂ Rn be Hm-measurable with Hm(E) <∞. Then E is purely m-unrectifiable
if and only if the set of those points a ∈ E for which Tma E exists is of Hm-measure zero.

Another deep characterization of purely unrectifiable sets is the following Besicovitch-Federer
structure theorem.

Theorem 2.55. Let Q be a countable union of sets with finite Mm-measure. Then Q is purely
m-unrectifiable if and only if Hm(PVQ) = 0 for almost all V ∈ G(n,m). Here PV : Rn → V is
the orthogonal projection and ”almost all” refers to a natural probability Radon measure γn,m on
G(n,m).

For the proof; see e.g. [Ma, Theorem 18.1]. Remark: There is a natural probability Radon
measure γn,m on G(n,m) that can be obtained from the general theory of Haar measures. Indeed,
the group O(n) of orthogonal linear maps Rn → Rn is compact and hence there exists a unique
invariant Radon measure (Haar measure) θn such that θn(O(n)) = 1 and

θn(A) = θn
(
{gh : h ∈ A}

)
= θn

(
{hg : h ∈ A}

)

for all A ⊂ O(n) and g ∈ O(n). The measure γn,m is then obtained by fixing V ∈ G(n,m) and
setting

γn,m(A) = θn
(
{g : gV ∈ A}

)
, A ⊂ G(n,m).

Being uniformly distributed γn,m is independent of the choice of V .
Suppose that E ⊂ Rn is (countably) m-rectifiable. Theorem 2.53 enables us to define the

gradient ∇Ef of a Lipschitz function f : Rn → R at Hm-a.e. x ∈ E as

(2.56) ∇Ef(x) =

m∑

i=1

∂vif(x)vi,
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where (v1, . . . , vm) is an orthonormal basis of Tmx E and ∂vif(x) denotes the directional derivative
of f in the direction vi. Note that we can write

E = E0 ⊔
∞⊔

j=1

Ej ,

where Hm(E0) = 0 and Ej ⊂ Mj , with Mj an m-dimensional C1-submanifold of Rn. Then
∇Ef(x) = ∇Mjf(x) whenever x ∈ Ej and f |Mj is differentiable at x (which holds Hm-a.e. in Mj

by Rademacher’s theorem).
Having defined ∇Ef(x), we can define the linear map dEfx : T

m
x E → R by

dEfx(v) = 〈v,∇Ef(x)〉, v ∈ Tmx E,

at all points where Tmx E and ∇Ef(x) exist. Above 〈·, ·〉 is the standard inner product in Rn.
If f = (f1, . . . , fN ) : R

n → RN is Lipschitz, we define a linear map dEfx : T
m
x E → RN by

dEfx(v) =

N∑

j=1

〈v,∇Efj(x)〉ej ,

where e1, . . . , eN is the standard basis of RN . If N ≥ m, we define the Jacobian of f , denoted by
JEf (x), for Hm-a.e. x ∈ E by

(2.57) JEf (x) =
√

det(dEfx)∗ ◦ dEfx.

Then we have the general area formula

(2.58)

∫

A
JEf dHm =

∫

RN

H0
(
A ∩ f−1(y)

)
dHm(y)

for every Hm-measurable A ⊂ E. Similarly, in the case N < m, we can define

JEf (x) =
√

det(dEfx) ◦ (dEfx)∗

and obtain the general co-area formula
∫

A
JEf (x)dHm(x) =

∫

RN

Hm−N
(
A ∩ f−1(y)

)
dHN (y)

for every Hm-measurable set. The following theorem will be useful in studying ”slices” of currents.

Theorem 2.59. Let E ⊂ Rn be m-rectifiable and f : Rn → R Lipschitz. Then for m1-a.e. t ∈ R,

(1) Et := f−1(t) ∩ E is (m− 1)-rectifiable and

(2) for Hm−1-a.e. x ∈ Et, tangent spaces T
m−1
x Et and T

m
x E exist, Tm−1

x ⊂ Tmx E, and

Tmx E = {y + λ∇Ef(x) : y ∈ Tm−1
x Et, λ ∈ R}.

(3) For every nonnegative Hm-measurable g : E → R, we have (the co-area formula)

∫ ∞

−∞

∫

Et

g dHm−1 dt =

∫

E
|∇Ef |g dHm.
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For the proof; see [Si, p. 68-69 and 28.1]. Here we just sketch the proof:
The finiteness of Hm−1Et for a.e. t ∈ R follows from Lemma 2.25 (iv). We can write

E = E0 ⊔
∞⊔

j=1

Ej ,

where Hm(E0) = 0 and Ej ⊂ Mj , with Mj an m-dimensional C1-submanifold of Rn. Then
Hm−1

(
E0 ∩ f−1(t)

)
= 0 for a.e. t ∈ R. Hence it is enough to prove the claims for E = M ,

where M is an m-dimensional C1-submanifold of Rn, with Hm(M) < ∞. Applying the implicit
function theorem (and using local coordinates), we may assume that M ⊂ Rm, with mm(M) <∞.
Rademacher’s theorem and Whitney extension theorem imply that, for every ε > 0, there exists
gε ∈ C1 such that

mm ({x ∈M : f(x) 6= gε(x) or ∇f(x) 6= ∇gε(x)}) < ε.

Applying this with ε = 1/i, i ∈ N, the problems are reduced to the case f ∈ C1. Sard’s theorem
implies that

m1 ({f(x) : |∇f(x)| = 0}) = 0.

Thus we may assume that ∇f(x) 6= 0 for every x ∈M . Now the implicit function theorem implies
that the level sets Mt = {x ∈M : f(x) = t} are locally (m−1)-dimensional C1 submanifolds, hence
(m − 1)-rectifiable. This proves (1). The claim (2) follows from the facts that ∇Mf(x) ∈ Tmx M
and ∇Mf(x) ⊥ Tm−1

x Mt. Finally, (3) is a generalization of the co-area formula.

3 Varifolds

From Wikipedia: Varifolds were first introduced by L.C. Young in 1951, under the name ”gen-
eralized surfaces”. Frederick Almgren slightly modified the definition in his mimeographed notes
(Almgren 1965) and coined the name varifold: he wanted to emphasize that these objects are sub-
stitutes for ordinary manifolds in problems of the calculus of variations. The modern approach to
the theory was based on Almgren’s notes and laid down by William Allard (Allard 1972).

Varifolds can be interpreted as measure-theoretic generalizations of smooth manifolds and they
generalize the idea of rectifiable currents.

3.1 Basic definitions

We start with introducing a metric (and hence a topology) on the Grassmannian space

G(n,m) = {V ⊂ Rn : V m-dimensional subspace of Rn}.

For V,W ∈ G(n,m), define

d(V,W ) = ‖PV − PW ‖ = sup{|PV x− PWx| : x ∈ Rn, |x| = 1},

where PV : Rn → V is the orthogonal projection onto V . With this metric G(n,m) is a compact
metric space.

Definition 3.2. Let U ⊂ Rn be open and 0 ≤ m ≤ n integers. A Radon (outer) measure on
U × G(n,m) is called an m-dimensional varifold (or m-varifold) in U . The set of m-dimensional
varifolds in U is denoted by Vm(U).
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Hence

Vm(U) = {V : V a Radon outer measure on U ×G(n,m)}
= {µ : µ Borel regular outer measure on U ×G(n,m),

µ(K ×G(n,m)) <∞ ∀ compact K ⊂ U}.

We equip Vm(U) with the weak topology (the following is just the rephrase of Definition 1.65 for
Radon outer measures):

Definition 3.3. The sequence Vi ∈ Vm(U) is said to converge to V ∈ Vm(U) (as varifolds), denoted
by Vi → V , if Vi ⇀ V as Radon (outer) measures, i.e.

∫

U×G(n,m)
f dVi →

∫

U×G(n,m)
f dV ∀f ∈ C0(U ×G(n,m)).

Definition 3.4. For each V ∈ Vm(U) we define the measure ‖V ‖ and its m-dimensional density
d(V, ·) in U by setting

‖V ‖(A) = V
(
A×G(n,m)

)
for Borel sets A ⊂ U,

d(V, a, r) =
‖V ‖

(
B̄(a, r)

)

ωmrm
, r > 0,

d(V, a) = lim
r→0

d(V, a, r) for a ∈ U if the limit exists.

The measure ‖V ‖ is also called the weight (measure) of V and denoted by µV . The mass of V is
defined as MV = ‖V ‖(U).

We abbreviate

Gn,m(U) = U ×G(n,m), Gn,m = Gn,m(R
n).

Example 3.5. Let E ⊂ Rn be an Hm-measurable m-rectifiable set. Then E has the approximate
tangent space Tmx E ∈ G(n,m) for Hm-a.e. x ∈ E. Define

VE(A) = Hm
(
{x ∈ E : (x, Tmx E) ∈ A}

)

for A ⊂ Gn,m. Then VE is an m-varifold, ‖VE‖ = Hm
xE, and MVE = Hm(E). Moreover,

∫

Gn,m

f dVE =

∫

E
f(x, Tmx E) dHm(x)

for all f ∈ C0(Gn,m).

Definition 3.6. Let E and Ẽ be Hm-measurable and (countably) m-rectifiable subsets of Rn, and
let θ (resp. θ̃) be nonnegative and locally Hm-integrable in E (resp. Ẽ). We say that (E, θ) and
(Ẽ, θ̃) are equivalent if

Hm
(
(E \ Ẽ) ∪ (Ẽ \ E)

)
= 0

and θ = θ̃ Hm-a.e. in E ∩ Ẽ. A (countably) rectifiable m-varifold VE,θ = V (E, θ) is the equivalence
class of a pair (E, θ) as above and (E, θ) is called a representative for V . If θ is integer valued,
V (E, θ) is called an integer multiplicity rectifiable m-varifold, or briefly an integer m-varifold .
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We adopt the convention that θ ≡ 0 in Rn\E. Associated to a rectifiablem-varifold V = V (E, θ)
there is a Radon measure µV , called the weight measure of V , defined by

(3.7) µV = Hm
xθ,

that is

µV (A) =

∫

A∩E
θ dHm

for Hm-measurable sets A. The mass of V = V (E, θ) is

MV = µV (R
n) =

∫

E∩Rn

θ dHm = (Hm
xθ)(Rn).

Every countably rectifiable m-varifold V (E, θ) induces an m-varifold VE,θ by

VE,θ(A) =

∫

{x∈E : (x,Tm
x E)∈A}

θ dHm(x), A ∈ Gn,m.

3.8 First and second variation formulae

Next we will study how the mass MV of an m-varifold V ∈ Vm(U) (resp. of a rectifiable m-varifold
V = (E, θ)) behaves under a perturbation by a 1-parameter family of diffeomorphisms. To get
an idea, let us consider first (a less abstract setting of) an m-dimensional C1-smooth submanifold
M ⊂ Rn.

Remark 3.9. Let M be an m-dimensional C1-smooth submanifold of Rn. For every point x ∈M
there exist an open neighborhood A ⊂ Rn of x and a C1-diffeomorphism ϕ : A → A′ onto an
open set A′ ⊂ Rn such that ϕ(A ∩M) is an open subset of Rm × {0} ⊂ Rm × Rn−m. Note that
TxM = (dϕx)

−1Rm.

Let then U ⊂ Rn be open such that U ∩M 6= ∅ and Hm(C∩M) <∞ for every compact C ⊂ U .
Let {φt}, −1 < t < 1, be a 1-parameter family of diffeomorphisms φt : U → U such that

φ : (−1, 1) × U → U, φ(t, x) = φt(x), is C
2,

φ0(x) = x ∀x ∈ U, and(3.10)

φt(x) = x ∀x ∈ U \K and t ∈ (−1, 1),

for some compact K ⊂ U . Define mappings X = (X1, . . . ,Xn) : U → Rn and Z =
(Z1, . . . , Zn) : U → Rn by

(3.11) X(x) =
∂φ(t, x)

∂t |t=0
and Z(x) =

∂2φ(t, x)

∂t2 |t=0
.

Then

(3.12) φt(x) = x+ tX(x) +
t2

2
Z(x) +O(t3),

where O(t3) ∈ Rn, with |O(t3)| ≤ c|t|3. Since φt(x) = x for x ∈ U \ K, the maps X and Z are
compactly supported.
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Definition 3.13. Let Mt = φt(M ∩K). The first and second variations of M (with respect to a
1-parameter family {φt}) are defined as

d

dt
Hm(Mt)|t=0 and

d2

dt2
Hm(Mt)|t=0,

respectively.

By the area formula

Hm(Mt) = Hm
(
φt(M ∩K)

)
=

∫

M∩K
JψtdHm,

where ψt = φt|M ∩ U . Since we can change the order of integration and differentiation, the
computation of the first and second variations reduces to calculating

∂

∂t
Jψt|t=0 and

∂2

∂t2
Jψt|t=0.

For that purpose, let us fix orthonormal bases τ1, . . . , τm of TxM for x ∈ M and e1, . . . , en of Rn.
We define the (induced) linear map dψt,x : TxM → Rn of ψt at x ∈M by

dψt,x(τ) = ∂τφt(x) = ∂τψt(x), τ ∈ TxM.

By (3.12), we have

dψt,x(τ) = τ + t∂τX(x) +
t2

2
∂τZ(x) +O(t3).

Writing the basis vectors τj, j = 1, . . . ,m, as

τj =

n∑

i=1

τ ijei,

we can express the matrix (aij)n×m of dψt,x w.r.t. bases τ1, . . . , τm of TxM, x ∈M , and e1, . . . , en
of Rn as

aij = τ ij + t∂τjX
i +

t2

2
∂τjZ

i +O(t3).

Consequently, the matrix of (dψt,x)
∗ ◦ (dψt,x) is (bij)m×m, where

bij =
n∑

k=1

akiakj

= δij + t
(
〈τi, ∂τjX〉+ 〈τj , ∂τiX〉

)
+ t2

(
1

2

(
〈τi, ∂τjZ〉+ 〈τj, ∂τiZ〉

)
+ 〈∂τiX, ∂τjX〉

)

+O(t3).

Next we apply the formula

det
(
I + tA+ t2B

)
= exp log det

(
I + tA+ t2B

)

= expTr
(
log
(
I + tA+ t2B

))

= expTr

(

tA+ t2B − 1

2
(tA+ t2B)2 +O(t3)

)

= exp

(

tTrA+ t2TrB − 1

2
Tr
(
t2A2 + 2t3AB + t4B2

)
+O(t3)

)

= exp

(

tTrA+ t2TrB − 1

2
t2 TrA2 +O(t3)

)

= 1 + tTrA+ t2TrB − 1

2
t2TrA2 +

1

2
t2(TrA)2 +O(t3)
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for symmetric square matrices I = (δij) = the identity matrix, A = (Aij), and B = (Bij), where

Aij = 〈τi, ∂τjX〉+ 〈τj , ∂τiX〉 = Aji and

Bij =
1

2

(
〈τi, ∂τjZ〉+ 〈τj , ∂τiZ〉

)
+ 〈∂τiX, ∂τjX〉,

to obtain

J2
ψt
(x) = det(dψt,x)

∗ ◦ (dψt,x) = det(bij)

= 1 + 2t
m∑

i=1

〈τi, ∂τiX〉+ t2
m∑

i=1

(

〈τi, ∂τiZ〉+ |∂τiX|2
)

+ 2t2

(
m∑

i=1

〈τi, ∂τiX〉
)2

− 1

2
t2

m∑

i,j=1

(
〈τi, ∂τjX〉+ 〈τj, ∂τiX〉

)2
+O(t3)

= 1 + 2t divM X + t2 divM Z + t2
m∑

i=1

|∂τiX|2 + 2t2 (divM X)2

− t2
m∑

i,j=1

〈τi, ∂τjX〉2 − t2
m∑

i,j=1

〈τi, ∂τjX〉〈τj , ∂τiX〉+O(t3)

= 1 + 2t divM X + t2



divM Z + 2 (divM X)2 +

m∑

i=1

∣
∣
∣

(
∂τiX

)⊥
∣
∣
∣

2
−

m∑

i,j=1

〈τi, ∂τjX〉〈τj , ∂τiX〉





+O(t3),

where
(
∂τiX

)⊥
= ∂τiX −

m∑

j=1

〈τj , ∂τiX〉τj

is the normal component of ∂τiX (normal to M). Above divM X is the divergence of X (at x ∈M)
with respect to M defined as

divM X =

m∑

i=1

〈τi, ∂τiX〉.

Finally, using
√
1 + s = 1 +

1

2
s− 1

8
s2 +O(s3),

we get

Jψt(x) = 1 + t divM X +
t2

2



divM Z + 2 (divM X)2 +

m∑

i=1

∣
∣
∣

(
∂τiX

)⊥
∣
∣
∣

2
−

m∑

i,j=1

〈τi, ∂τjX〉〈τj , ∂τiX〉





− t2

8
(2 divM X)2 +O(t3)

= 1 + t divM X +
t2

2



divM Z + (divM X)2 +
m∑

i=1

∣
∣
∣

(
∂τiX

)⊥
∣
∣
∣

2
−

m∑

i,j=1

〈τi, ∂τjX〉〈τj , ∂τiX〉





+O(t3).
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Hence
∂

∂t
Jψt|t=0 = divM X,

and therefore, by the area formula, we obtain the first variation formula

d

dt
Hm(Mt)|t=0 =

∫

M∩K

∂

∂t
Jψt|t=0 dHm

=

∫

M∩K
divM X dHm(3.14)

=

∫

M
divM X dHm,

where the last equality holds since X ≡ 0 in M \K. Similarly, we get the second variation formula

d2

dt2
Hm(Mt)|t=0

=

∫

M

(

divM Z + (divM X)2 +

m∑

i=1

∣
∣
(
∂τiX

)⊥∣∣2 −
m∑

i,j=1

〈τi, ∂τjX〉〈τj , ∂τiX〉
)

dHm(3.15)

Definition 3.16. An m-dimensional C1-smooth submanifold M ⊂ Rn is stationary in an open set
U ⊂ Rn if Hm(M ∩ C) <∞ for every compact C ⊂ U and if

d

dt
Hm(Mt)|t=0 = 0

for Mt = φt(M ∩K) whenever φt and K are as in (3.10).

By the first variation formula (3.14), M is stationary in U if and only if

∫

M
divM X dHm = 0

for every C1-smooth X : U → Rn with compact support in U . Indeed, every such X generates a
1-parameter family of C2-diffeomorphisms {φt} satisfying (3.10), with K = suppX, as the flow of
X. More precisely, for every x ∈ U , t 7→ φt(x) is the integral curve of X starting at x, that is
φ0(x) = x and

d

dt
φt(x) = X

(
φt(x)

)
.

Remark 3.17. If M is an m-dimensional C2-smooth submanifold of Rn, m < n, and U ⊂ Rn is
open such that Ū ∩M is compact, then M is stationary in U if and only if H ≡ 0 in M ∩U , where
H is the mean curvature vector of M . The mean curvature of M will be discussed in a home work
session.

Next we will generalize the first variation formula for rectifiable m-varifolds. Let V = V (E, θ)
be a rectifiable m-varifold in an open set U ⊂ Rn. We suppose for simplicity that

(3.18) θ(x) ≥ 1

for Hm-a.e. x ∈ E. This restriction is made to avoid discussions on approximate tangent spaces
(and hence Jacobians) with respect to multiplicity θ. We conclude from Theorem 2.52 that Tmx E
and Tmx Ẽ exists and are equal for Hm-a.e. x ∈ E ∩ Ẽ if (Ẽ, θ̃) is another representative for V .
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Therefore we can define the approximate tangent space of V at x by setting TxV = Tmx E. Suppose
then that f : U → U ′ is a Lipschitz mapping to an open set U ′ ⊂ RN , N ≥ n, with the Jacobian
JEf defined in (2.57). We notice that JEf (x) = J Ẽf (x) for Hm-a.e. x ∈ E ∩ Ẽ, and hence we may

denote it by JVf . By the general area formula (2.58), we have

(3.19)

∫

A
g JEf dHm =

∫

fE

∑

x∈A∩f−1(y)

g(x) dHm =

∫

fE

(
∫

A∩f−1(y)
gH0

)

dHm

for every nonnegative Hm-measurable g on E and Hm-measurable A ⊂ E. Clearly fE is an m-
rectifiable subset of U ′. We assume, moreover, that f : U → U ′ is proper , that is f−1K ⊂ U is
compact for every compact K ⊂ U ′. Then we define θ′ on U ′ by setting

θ′(y) =
∑

x∈E∩f−1

θ(x) =

∫

E∩f−1(y)
θ dH0

and the image (or push-forward)

f#V = V (fE, θ′).

Since ∫

K
θ′ dHm =

∫

fE∩K
θ′ dHm =

∫

E∩f−1K
θJEf dHm

for every compact K ⊂ U ′, we see that θ′ is locally Hm-integrable in U ′. Hence f#V is a rectifiable
m-varifold in U ′ with multiplicity θ′. Moreover,

Mf#V =

∫

fE
θ′ dHm =

∫

E
JEf θ dHm.

Now we are ready to define the first variation of V . Let {φt} be a 1-parameter family of diffeomor-
phisms φt : U → U as in (3.10). We denote V xK = V (E ∩K, θ|K), where K ⊂ U is the compact
set in (3.10). Then

Mφt#(V xK) =

∫

E∩K
JEφtθ dHm

and we can compute the first variation

d

dt
Mφt#(V xK)|t=0

exactly as in the case of C1-submanifolds and obtain

(3.20)
d

dt
Mφt#(V xK)|t=0 =

∫

E
divE X dµV ,

where X is as in (3.11) and divE X is the divergence of X with respect to E, defined as

divEX(x) =

m∑

i=1

〈τi, ∂τiX(x)〉,

with τ1, . . . , τm an orthonormal bases of Tmx E.

As in the case of C1-submanifolds, we define
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Definition 3.21. A rectifiable m-varifold V = V (E, θ) is stationary in an open set U ⊂ Rn if

∫

E
divE X dµV = 0

for any C1-smooth X : U → Rn with compact support in U .

We also generalize the notion of mean curvature as follows:

Definition 3.22. Let V = V (E, θ) be a rectifiable m-varifold in an open set U ⊂ Rn. Suppose
H : E ∩U → Rn is locally µV -integrable. We say that V = V (E, θ) has generalized mean curvature
H in U if ∫

U
divE X dµV = −

∫

U
〈X,H〉 dµV

whenever X : U → Rn is a C1 with compact support in U .

Hence a rectifiable m-varifold V = V (E, θ) is stationary in an open set U ⊂ Rn if and only if it
has zero generalized mean curvature in U .

Next we will introduce the variation of a (general) varifold. For that purpose, let U,U ′ ⊂ Rn be
open, V ∈ Vm(U) an m-varifold in U , and suppose that f : U → U ′ is a C1-diffeomorphism. Recall
that an m-varifold in an open set U ⊂ Rn is a Radon (outer) measure on Gn,m(U) = U ×G(n,m).
First we define the push forward of V under f by setting for Borel sets B ⊂ Gn,m(U

′)

f#V (B) =

∫

F−1(B)
Jf (x,E)dV (x,E),

where F : Gn,m(U) → Gn,m(U
′) is defined by

F (x,E) =
(
f(x), dfxE

)

and
Jf (x,E) =

(
det
(
dfx|E

)∗ ◦
(
dfx|E

))1/2
, (x,E) ∈ Gn,m(U).

Note that dfx : R
n → Rn is an invertible linear map for all x ∈ U since f : U → U ′ is a C1-

diffeomorphism. In particular, dfx|E : E → dfxE ∈ G(n,m) is invertible. For a Borel set A ⊂ U ,
the restriction V xGn,m(A) is the Radon measure in Gn,m(U) defined as

(
V xGn,m(A)

)
(B) = V

(
B ∩Gn,m(A)

)
, B ⊂ Gn,m(U).

Definition 3.23. Let V be an m-varifold in an open set U ∈ Rn and let C1
0 (U,R

n) be the space of
C1-mappings X : U → Rn with compact support in U . Then the first variation of V is the linear
functional δV : C1

0(U,R
n) → R,

δV (X) =
d

dt
Mφt#(V xGn,m(K))|t=0,

where {φt} is a 1-parameter family of diffeomorphisms U → U associated to X ∈ C1
0 (U,R

n) as in
(3.10) and (3.11), that is φ = φ(·, ·) is the flow of X.

Again, exactly the same computation as in smooth case gives

(3.24) δV (X) =

∫

Gn,m(U)
divS X(x) dV (x, S),



Fall 2016 45

where, for any (x, S) ∈ G(n,m)(U), divS X is the divergence of X with respect to S, defined as

divS X(x) =

m∑

i=1

〈τi, ∂τiX(x)〉,

with τ1, . . . , τm an orthonormal bases of S.

Definition 3.25. A varifold V ∈ Vm(U) is said to be stationary if δV (X) = 0 for every X ∈
C1
0 (U,R

n).

More generally, V is said to have locally bounded first variation if for each W ⋐ U there exists
a constant c <∞ such that

|δV (X)| ≤ c sup
U

|X| ∀X ∈ C1
0(U,R

n), with suppX ⊂W.

Definition 3.26. For any V ∈ Vm(U), we define the set function ‖δV ‖ : P(U) → [0,∞] by

‖δV ‖(U ′) = sup{δV (X) : X ∈ C1
0(U,R

n), |X| ≤ 1, suppX ⊂ U ′}

for open sets U ′ ⊂ U , and then

‖δV ‖(A) = inf{‖δV ‖(U ′) : U ′ ⊂ U open, A ⊂ U ′}

for A ⊂ U .

We note that ‖δV ‖ is a metric outer measure. If V has locally bounded first variation, then
‖δV ‖ is a Radon measure by Theorem 1.31 and, moreover, by the general Riesz representation
theorem 1.34, there exists a ‖δV ‖-measurable mapping ηV : U → Sn−1 such that

(3.27) δV (X) = −
∫

U
〈X, ηV 〉 d‖δV ‖

for all X ∈ C1
0 (U,R

n). [Use the Hahn-Banach theorem to extend δV : C1
0 (U,R

n) to a linear func-
tional on C0(U,R

n) and remember the construction of the Radon measure µ in the proof of the
Riesz representation theorem to note that µ is, in fact, ‖δV ‖.]

Recall that the weight (measure) µV = ‖V ‖ is defined as

µV (A) = V
(
A×G(n,m)

)

for all Borel sets A ⊂ U . By the Radon-Nikodym theorem (see e.g. [Ma, 2.17], [Si, 4.7], or [Ho,
5.31]), the Radon-Nikodym derivative

DµV ‖δV ‖(x) = lim
r→0

‖δV ‖
(
B̄(x, r)

)

µV
(
B̄(x, r)

)

exists for µV -a.e. x ∈ U and
∫

U
〈X, ηV 〉 d‖δV ‖ =

∫

U
〈X,HV 〉 dµV +

∫

U
〈X, ηV 〉 dσ,

where σ = ‖δV ‖xN, N = {x ∈ U : DµV ‖δV ‖(x) = ∞}, and

HV (x) = DµV ‖δV ‖(x)ηV (x).
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Hence we can write (3.27) as

δV (X) =

∫

Gn,m(U)
divS X(x) dV (x, S)

= −
∫

U
〈X,HV 〉 dµV −

∫

U
〈X, ηV 〉 dσ

= −
∫

U
〈X,HV 〉 dµV −

∫

N
〈X, ηV 〉 dσ.

We call HV the generalized mean curvature of V , N the generalized boundary of V , σ the generalized
boundary measure of V , and ηV |N the generalized unit co-normal of V .

Remark 3.28. IfM ⊂ Rn is a C2-smooth m-dimensional submanifold with smooth boundary ∂M
and X ∈ C1(U,Rn), with M ⊂ U, U ⊂ Rn open, then

∫

M
divM X dHm = −

∫

M
〈X,H〉dHm −

∫

∂M
〈X, η〉dHm−1,

where H is the mean curvature (vector) of M and η the inward pointing unit co-normal of ∂M ,
that is, |η| ≡ 1, η is normal to ∂M , tangential to M , and points inwards to M .

The first variation formula is applied with certain specific choices of the vector field X. Most
importantly, we obtain the so-called monotonicity formula and its applications to the regularity
theory of varifolds. These will be discussed in a series of presentations in home work sessions. If
the time permits, we will return to these topics in context of currents.

4 Currents

In this Section we introduce and study some basic notions in the theory of currents which (like
varifolds and m-rectifiable varifolds) are kind of generalized surfaces.

Let us start with the following motivating example.

Example 4.1. Let M be a smooth oriented m-dimensional submanifold of Rn. We can integrate
smooth differential m-forms α (with compact support) over M and thus consider M as a linear
functional

[M ] : {smooth differential m-forms with compact support} → R,

[M ](α) =

∫

M
α.

Currents are, by definition, such continuous linear functionals on the space of smooth differential
m-forms with compact support; see Definition 4.21.

4.2 m-vectors

In this subsection, we discuss briefly about m-vectors which are kind of ”products” of vectors.
Given v1, v2 ∈ Rn, a geometric interpretation of the 2-vector v1 ∧ v2 is the oriented parallelogram
spanned by vectors v1 and v2.
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v1

v2

v2

v1 ∧ v2

−v1

(−v1) ∧ v2

If v1 = λv2, the parallelogram is degenerate, and we have v1 ∧ v2 = 0.
Similarly, for a 3-vector v1 ∧ v2 ∧ v3 can be interpreted as an oriented parallelepiped spanned

by vectors v1, v2, v3 ∈ Rn.

v1

v2v3
v1 ∧ v2

v1 ∧ v2

v1 ∧ v2 ∧ v3

Formally, the quickest (but not necessarily the most elegant) way to define the vector space of
m-vectors ∧

m(R
n), m = 0, . . . , n,

is as the space of all (real) linear combinations
∑

1≤i1<···<im≤n

ai1···im
︸ ︷︷ ︸

∈R

ei1 ∧ · · · ∧ eim ,

where (e1, . . . , en) is the standard (ordered) basis of Rn. The basis (m-)vectors ei1 ∧ · · · ∧ eim ,
1 ≤ i1 < · · · < im ≤ n, of

∧

m(R
n) can be defined as the strictly increasing sequences i1 < · · · < im.

Thus we may identify ei1 ∧ · · · ∧ eim with the m-tuple (i1, . . . , im) if i1 < · · · < im. Hence

dim
∧

m(R
n) =

(
n

m

)

.

If m = n, e1 ∧ · · · ∧ en is the only basis vector, and therefore

dim
∧

n(R
n) = 1.

Hence we may identify
∧

n(R
n) = R.

Similarly,
∧

1(R
n) = span(e1, . . . , en) = Rn.

We also define ∧

0(R
n) = R and

∧

k(R
n) = {0} for k > n.

We want to ”multiply” k-vectors and m-vectors and hence to give ei1 ∧ · · · ∧ eim a meaning as a
”product” of vectors ei1 , . . . , eim . Since the desired properties of the wedge product (or exterior
product)

∧

k(R
n)×∧m(R

n) → ∧

k+m(R
n) are
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(a) multilinearity :

(au+ bv) ∧ cw = ac(u ∧ w) + bc(v ∧ w), a, b, c ∈ R, u, v ∈
∧

k(R
n), w ∈

∧

m(R
n);

au ∧ (bv + cw) = ab(u ∧ v) + ac(u ∧ w), a, b, c ∈ R, u ∈
∧

k(R
n), v, w ∈

∧

m(R
n),

(b) associativity :
u ∧ (v ∧ w) = (u ∧ v) ∧w, and

(c) anticommutativity :

u ∧ v = (−1)kmv ∧ u, u ∈
∧

k(R
n), v ∈

∧

m(R
n),

it is enough to define wedge products

ei1 ∧ ei2 ∧ · · · ∧ eim ∧ ej = (ei1 ∧ ei2 ∧ · · · ∧ eim) ∧ ej
for 1 ≤ i1 < · · · < im and j ∈ {1, . . . , n}. We have already defined ei∧ej ∈

∧

2(R
n) for 1 ≤ i < j ≤ n

(as the oriented pair (i, j) or the positively oriented unit square in Rn spanned by ei and ej). We
define

ej ∧ ei = −ei ∧ ej for i < j,

and
ei ∧ ei = 0.

We also have defined already ei∧ej ∧ek if i < j < k , i.e. the positively oriented unit cube spanned
by ei, ej , ek (or the oriented 3-tuple (i, j, k)). So, we define for i < j < k

ei ∧ ek ∧ ej = ei ∧ (ek ∧ ej)
= ei ∧ (−ej ∧ ek)
= −ei ∧ ej ∧ ek,

ek ∧ ei ∧ ej = −ei ∧ ek ∧ ej)
= −(−ei ∧ ej ∧ ek)
= ei ∧ ej ∧ ek,

and so on. Also ei ∧ ei ∧ ek = 0 if i = j or i = k, or j = k. Continuing this way we have the
wedge product u ∧ v ∈ ∧k+m(R

n) for u ∈ ∧k(R
n) and v ∈ ∧m(R

n). If k +m > n, u ∧ v = 0 and
∧

k+m(R
n) = {0}. Let us summarize the discussion above:

Proposition 4.3. The wedge product has the properties:

(a) multilinearity:

(4.4) (au+ bv) ∧ cw = ac(u ∧ w) + bc(v ∧ w)

for a, b, c ∈ R, u, v ∈ ∧k(R
n), w ∈ ∧m(Rn),

(b) associativity:

(4.5) u ∧ (v ∧ w) = (u ∧ v) ∧ w,

and
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(c) anticommutativity:

(4.6) u ∧ v = (−1)kmv ∧ u

for u ∈ ∧k(Rn), v ∈ ∧m(R
n).

Since the m-vectors ei1 ∧ · · · ∧ eim , 1 ≤ i1 < · · · < im ≤ n, form a basis of
∧

m(R
n), we may

equip
∧

m(R
n) with an inner product 〈·, ·〉 such that these m-vectors form an orthonormal basis.

More precisely, denote
∧

(n,m) = {(i1, . . . , im) ∈ Nm : 1 ≤ i1 < · · · < im ≤ n}

and eI = ei1 ∧ · · · ∧ eim for I = (i1, . . . , im) ∈
∧
(n,m). Then

(4.7)

〈
∑

I∈
∧

(n,m)

aIeI ,
∑

J∈
∧

(n,m)

bJeJ

〉

=
∑

I∈
∧

(n,m)

aIbI .

In fact, identifying
∧

m(R
n) and R(

n
m) isomorphically, i.e. by identifying the basis vectors eI , I ∈

∧
(n,m), with the standard basis vectors of R(

n
m), the inner product in (4.7) becomes the standard

inner product in R(
n
m).

We define the norm

(4.8) |v| =
√

〈v, v〉

for v ∈ ∧m(Rn). If v is a simple m-vector, that is

v = v1 ∧ · · · ∧ vm
for some vectors v1, . . . , vm ∈ Rn, then

(4.9) |v| = |v1 ∧ · · · ∧ vm|

is the (m-dimensional) volume of the parallelepiped spanned by v1, . . . , vm. In particular,

|v1 ∧ · · · ∧ vm| = 0

if and only if v1, . . . , vm are linearly dependent.

4.10 m-covectors

Let
∧1(Rn) denote the dual of Rn (thus

∧1(Rn) = (Rn)∗) and let dx1, . . . , dxn denote the dual
basis of e1, . . . , en. That is,

dxi(ej) = δij =

{

1, if i = j;

0, if i 6= j.

Then we define the vector space

(4.11)
∧

m(Rn) =
∧

m

(∧
1(Rn)

)

as above by replacing ei with dx
i. The elements

(4.12) α =
∑

i1<···<im

ai1···imdx
i1 ∧ · · · ∧ dxim =

∑

I∈
∧

(n,m)

aIdx
I
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of
∧m(Rn) are called m-covectors. The space

∧m(Rn) has the induced) inner product
〈

∑

I∈
∧

(n,m)

aIdx
I ,

∑

J∈
∧

(n,m)

bJdx
J

〉

=
∑

I∈
∧

(n,m)

aIbI

such that the m-covectors dxi1 ∧ · · · ∧ dxim , 1 ≤ i1 < · · · < im ≤ n, form an orthonormal
basis. Moreover,

∧m(Rn) is the dual vector space of
∧

m(R
n). Again we have

∧0(Rn) = R =
∧n(Rn),

∧1(Rn) = Rn, and
∧m(Rn) = {0} if m > n.

4.13 m-vector fields, m-covector fields, and smooth differential m-forms

Definition 4.14. If U ⊂ Rn, the mappings U → ∧

m(R
n),

x 7→
∑

I∈
∧

(n,m)

aI(x)eI ,

and U → ∧m(Rn),

x 7→
∑

I∈
∧

(n,m)

aI(x)dx
I ,

are called m-vector fields and m-covector fields in U , respectively.

Definition 4.15. The mappings U → ∧m(Rn),

x 7→
∑

I∈
∧

(n,m)

aI(x)dx
I ,

are also called (differential) m-forms in U .

If U ⊂ Rn is open and

α =
∑

I∈
∧

(n,m)

αI(x)dx
I ,

where the functions αI are C∞-smooth, we say that α is a C∞-smooth differential m-form in U .
The space of all C∞-smooth differential m-forms in U will be denoted by Am(U).

Since
∧0(Rn) = R, we have A0(U) = C∞(U,R). If f : U → R is C∞, i.e. f ∈ A0(U), its

differential df : U → ∧1(Rn) is a C∞-smooth differential 1-form such that at a point x ∈ U ,
df(x) : Rn → R is the linear mapping defined by

df(x)v = 〈∇f(x), v〉, v ∈ Rn.

Since, on the other hand,

dxi(v) = dxi





n∑

j=1

vjej



 = vi

and hence

df(x)v = 〈∇f(x), v〉 =
〈

n∑

i=1

∂f(x)

∂xi
ei, v

〉

=
n∑

i=1

∂f(x)

∂xi
vi =

n∑

i=1

∂f(x)

∂xi
dxi(v),
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we notice that

(4.16) df =

n∑

i=1

∂f

∂xi
dxi.

Moreover, dxi is the differential of the ith coordinate function x 7→ xi.

Definition 4.17. Let
α =

∑

I∈
∧

(n,m)

αIdx
I

be a C∞-smooth differential m-form. The exterior derivative of α is the (m+ 1)-form

dα =
∑

I∈
∧

(n,m)

dαI ∧ dxI =
∑

I∈
∧

(n,m)

n∑

i=1

∂αI
∂xi

dxi ∧ dxI .

In particular, df is the exterior derivative of a 0-form f .

Using the facts that
∂2αI
∂xi∂xj

=
∂2αI
∂xj∂xi

and
dxi ∧ dxj = −dxj ∧ dxi,

we obtain
d2α = d(dα) = 0.

Definition 4.18. Let U ⊂ Rn and V ⊂ Rd be open sets and f = (f1, . . . , fd) : U → V a C∞-smooth
mapping. The pull-back of a differential m-form α in V ,

α =
∑

1≤i1<···<im≤d

αi1···imdx
i1 ∧ · · · ∧ dxim ,

is the differential m-form f∗α in U defined by

f∗α =
∑

1≤i1<···<im≤d

(
αi1···im ◦ f

)
df i1 ∧ · · · ∧ df im,

where

df j =

n∑

i=1

∂f j

∂xi
dxi.

Notice that we do not require α being smooth. The pull-back and the exterior derivative
commute, that is

(4.19) f∗(dα) = df∗α

for smooth α.
Let Dm(U) ⊂ Am(U) denote the space of all C∞-smooth differentialm-forms in U with compact

support, that is, if

α =
∑

I

αIdx
I ,
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then each αI is C
∞-smooth and there exists a compact setK ⊂ U such that suppαI ⊂ K for every I.

We endow Dm(U) with the locally convex topology by saying that a sequence αk ∈ Dm(U), k ∈ N,

αk =
∑

I

αkIdx
I

converges to

α =
∑

I

αIdx
I ∈ Dm(U)

if there exists a compact set K ⊂ U such that

suppαk :=
⋃

I

suppαkI ⊂ K ∀k

and
∂|J |αkI
∂xJ

→ ∂|J |αI
∂xJ

uniformly as k → ∞ for every multi-index J = i1 · · · iℓ.

4.20 m-currents; definition and basic notions

Definition 4.21. An m-current in an open set U ⊂ Rn is a continuous (w.r.t. the locally convex
topology described above) linear functional

T : Dm(U) → R.

The space of m-currents in U is denoted by Dm(U).

Definition 4.22. The boundary of an m-current T ∈ Dm(U) is the (m−1)-current ∂T ∈ Dm−1(U)
defined by

∂T (ω) = T (dω)

for all ω ∈ Dm−1(U). Since d2 = 0, we have ∂2T = ∂(∂T ) = 0.

Example 4.23. Let M ⊂ Rn be a smooth oriented m-dimensional submanifold with smooth
boundary ∂M . Let U ⊂ Rn be an open set such that M ∪ ∂M ⊂ U . Then M and ∂M define
currents

[M ] ∈ Dm(U) : [M ](ω) =

∫

M
ω, ω ∈ Dm(U),

[∂M ] ∈ Dm−1(U) : [∂M ](α) =

∫

∂M
α, α ∈ Dm−1(U).

By Stokes’ theorem

[∂M ](α) =

∫

∂M
α =

∫

M
dα = [M ](dα)

for all α ∈ Dm−1(U). Hence ∂[M ] = [∂M ].

Remark 4.24. For the definitions of the integrals
∫

M
dα and

∫

∂M
α

we refer to literature on differential geometry (e.g. [Lee], [Ho2]). However, since we will later
integrate differential m-forms over ”oriented” m-rectifiable sets, we will explain below the meaning
of
∫

M ω even in this more general setting.
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Let V ∈ G(n,m) and let L : Rm → V be a linear isometric isomorphism (the restriction to Rm

of an orthogonal mapping O : Rn → Rn). Now

∧

m(V ) = {
∑

ai1···imvi1 ∧ · · · ∧ vim : vij ∈ V }
= {λ(Le1) ∧ · · · ∧ (Lem) : λ ∈ R}

is 1-dimensional. Hence, if v ∈ ∧m(V ), with |v| = 1, then the only other w ∈ ∧m(V ), with |w| = 1,
is w = −v. Let TxM be the tangent space of M at x (here, first, M is an oriented m-dimensional
smooth submanifold of Rn). ThenM being ”oriented” means that we have chosen, for every x ∈M ,
an m-vector ~M(x) ∈ ∧m(TxM) such that | ~M(x)| ≡ 1 and x 7→ ~M(x) ∈ G(n,m) is continuous. We
then define

∫

M
ω =

∫

M
〈 ~M(x), ω(x)〉dHm(x).

Here 〈 ~M (x), ω(x)〉 = ω
(
~M(x)

)
(x) ∈ R is the ”dual pairing”. In the general case, M will be

m-rectifiable, Tmx M the approximate tangent space of M , and ~M will be replaced by a ”Borel
orientation”.

Example 4.25. 1. m = 0: For a ∈ Rn, let [a] = δa ∈ D0(R
n),

[a](ϕ) = ϕ(a), ϕ ∈ D0(Rn).

2. m = 1: Let Γ ⊂ Rn be a C1-curve, ~Γ(x) the unit tangent vector to Γ such that x 7→ ~Γ(x) is
continuous. Then

[Γ](ω) =

∫

Γ
〈~Γ(x), ω(x)〉dH1(x), ω ∈ D1(Rn).

3. m = n: Let U ⊂ Rn be open with smooth boundary ∂U . Then

[U ](ω) =

∫

U
〈e1 ∧ · · · ∧ en, ω(x)〉dmn(x), ω ∈ Dn(Rn).

4. Let Q = [0, 1] × [0, 1] and let T ∈ D1(R
2) be defined as

T (ω) =

∫

Q
〈e1, ω(x)〉dm2(x), ω ∈ D1(R2).

Writing ω = ω1dx
1 + ω2dx

2, we see that

T (ω) =

∫

Q
〈e1, ω(x)〉dm2(x)

=

∫

Q
ω1 〈e1, dx1〉
︸ ︷︷ ︸

≡1

dm2(x) +

∫

Q
ω2 〈e1, dx2〉
︸ ︷︷ ︸

≡0

dm2(x)

=

∫

Q
ω1dm2(x).
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On the other, ∂T ∈ D0(R
2), so it operates on smooth functions (0-forms) as

∂T (ϕ) = T (dϕ) = T

(
∂ϕ

∂x1
dx1 +

∂ϕ

∂x2
dx2
)

=

∫

Q

∂ϕ

∂x1
dm2

=

∫ 1

0

∫ 1

0

∂ϕ

∂x1
dx1 dx2

=

∫ 1

0
(ϕ(1, x2)− ϕ(0, x2)) dx2

=

∫

I1

ϕ−
∫

I0

ϕ,

where I0 and I1 are the line segments I0 =
[
(0, 0), (0, 1)

]
, I1 =

[
(1, 0), (1, 1)

]
. So,

∂T = H1
xI1 −H1

xI0.

Q

T

∂T∂T

I0 I1

Notice that T is a 1-dimensional current but its ”support” is 2-dimensional.

Definition 4.26. We define the mass of T ∈ Dm(U) by

(4.27) M(T ) = sup{T (ω) : ω ∈ Dm(U), |ω(x)| ≤ 1 ∀x ∈ U}.

If W ⊂ U is open, we define

MW (T ) = sup{T (ω) : ω ∈ Dm(U), |ω(x)| ≤ 1 ∀x ∈W, suppω ⊂W}.

Remark 4.28. (a) There is another slightly different definition of the mass: Indeed, one first
define the co-mass of an m-covector η ∈ ∧m(Rn) by

‖η‖ = sup{〈ζ, η〉 : |ζ| ≤ 1, ζ ∈
∧

m(R
n) simple}

and then
M(T ) = sup{T (ω) : ω ∈ Dm(U), ‖ω(x)‖ ≤ 1 ∀x ∈ U}.

Since ‖ω(x)‖ ≤ |ω(x)|, it is possible that M(T ) >M(T ).

(b) Suppose that L : Dm(U) → R is a linear map that is continuous with respect to the norm
topology of Dm(U), that is L(ωi) → L(ω) if ωi, ω ∈ Dm(U), with |ωi − ω| → 0. Since the
convergence in the locally convex topology of Dm(U) implies the convergence in the norm
topology, we notice that L is continuous with respect to the locally convex topology, too.
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Hence L ∈ Dm(U). On the other hand, since the norm topology of Dm(U) is coarser than
the locally convex topology, there can be m-currents with infinite mass. In other words, each
m-current T ∈ Dm(U) is a linear mapping T : Dm(U) → R that is continuous with respect to
the locally convex topology but not necessarily with respect to the norm topology of Dm(U).

(c) Since (Dm(U), | · |) is a normed space, its dual space {T ∈ Dm(U) : M(T ) < ∞} is a Banach
space.

Applying the Hahn-Banach theorem and the Riesz representation theorem we obtain the fol-
lowing:

Theorem 4.29. Suppose that T ∈ Dm(U) such that MW (T ) < ∞ for every W ⋐ U . Then there
exists a Radon measure µT on Rn and a µT -measurable mapping ~T : Rn → ∧

m(R
n) such that

|~T (x)| = 1 for µT -a.e. x ∈ Rn and

T (ω) =

∫

〈~T (x), ω(x)〉dµT (x) ∀ω ∈ Dm(U).

The total variation measure µT associated to T is characterized by

µT (W ) = sup{T (ω) : ω ∈ Dm(U), |ω| ≤ 1, suppω ⊂W} = MW (T )

for every open W ⊂ U . In particular,

µT (U) = µT (R
n) = M(T ).

Definition 4.30 (Restrictions of currents). If T ∈ Dm(U), M(T ) <∞, and A ⊂ Rn is Borel, then
the restriction of T to A is the m-current TxA ∈ Dm(U),

(TxA)(ω) =

∫

A
〈~T (x), ω(x)〉dµT (x), ω ∈ Dm(U),

where ~T and µT are as in Theorem 4.29. Similarly, if g is a µT -integrable function, we define
Txg ∈ Dm(U), the interior multiplication by g, by

(Txg)(ω) =

∫

g(x)〈~T (x), ω(x)〉dµT (x), ω ∈ Dm(U).

Definition 4.31. The support of T ∈ Dm(U) is the set

suppT = U \
⋃

{V : V ⊂ Rn open, T (ω) = 0 ∀ω ∈ Dm(U), suppω ⊂ V }.

If M(T ) < ∞, and hence µT exists, then suppT = U ∩ suppµT . Recall that the support of the
measure µT is the set

suppµT = Rn \
⋃

{V : V ⊂ Rn open, µT (V ) = 0}.

Definition 4.32. Let Ti, T ∈ Dm(U). We say that the sequence Ti converges to T and write

Ti → T

if
lim
i→∞

Ti(ω) = T (ω)

for every ω ∈ Dm(U). Hence, in fact, Ti
w⋆

−−→ T .
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Proposition 4.33. Suppose Ti → T . Then

∂Ti → ∂T and M(T ) ≤ lim inf
i→∞

M(Ti).

Remark 4.34. The lower semicontinuity of the mass is very important and useful property in
mass minimizing problem.

Remark 4.35. We notice that the normed space (Dm(U), | · |) is separable, and hence the closed
unit ball of its dual {T ∈ Dm(U) : M(T ) < ∞} is sequentially compact in the weak∗ topology by
the (sequential) Banach-Anaoglu theorem.

By applying the (sequential) Banach-Alaoglu theorem for the Banach space {T ∈
Dm(U) : M(T ) <∞} we obtain the following:

Theorem 4.36. Let Ti ∈ Dm(U) with

sup
i

M(Ti) <∞.

Then there exist a subsequence Tij and T ∈ Dm(U) such that

Tij → T.

Next we define the cartesian product of currents Ti ∈ Dmi
(Ui), Ui ⊂ Rni open, i = 1, 2. Any

differential (m1 +m2)-form ω in U1 × U2 can be written in the form

ω(x, y) =
∑

(I, J) ∈
∧

(n1,m′

1)×
∧

(n2,m′

2)
m′

1+m
′

2=m1+m2

ωIJdx
I ∧ dyJ , (x, y) ∈ U1 × U2.

Then we define:

Definition 4.37. Let Ti ∈ Dmi
(Ui), Ui ⊂ Rni open, i = 1, 2. The cartesian product T1 × T2 ∈

Dm1+m2
(U1 × U2) is defined by

(T1 × T2)(ω) = T1




∑

I∈
∧

(n1,m1)

T2




∑

J∈
∧

(n2,m2)

ωIJdy
J



 dxI





for ω ∈ Dm1+m2(U1 × U2).

Notice that T1×T2 ignores the terms dxI∧dyJ , where I ∈ ∧(n1,m
′
1), J ∈ ∧(n2,m

′
2),m

′
1+m

′
2 =

m1 +m2 but (m′
1,m

′
2) 6= (m1,m2).

Remark 4.38. (a) The motivation of the definition is, of course, that we want

[M1 ×M2] = [M1]× [M2]

if M1 and M2 are smooth submanifolds.

(b) Since
d(α ∧ β) = dα ∧ β + (−1)mα ∧ dβ

for m-forms α, we have

∂(T1 × T2) = (∂T1)× T2 + (−1)m1T1 × (∂T2).
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As an important special case we consider the following example:

Example 4.39. Let T1 =
[
[0, 1]

]
∈ D1(R) and T2 = T ∈ Dm(R

n).

RnRn

T

[1]× T

[0]× T

T1

[

[0, 1]
]

× T

Then

∂
([
[0, 1]

]
× T

)
= (∂T1)× T − T1 × ∂T

=
(
[1]− [0]

)
× T − T1 × ∂T

= [1]× T − [0]× T −
[
[0, 1]

]
× ∂T.

∂T

T
(−) (+)

[0]× T

[1]× T

[

[0, 1]
]

× T

Next we define the push-forward of a current under a smooth mapping.

Definition 4.40. Suppose that U : Rn and V ⊂ Rd are open sets and f : U → V a C∞-mapping.
Let T ∈ Dm(U) be such that f | suppT is proper, i.e. f−1K ∩ suppT is compact for every compact
K ⊂ V . We define f♯T ∈ Dm(V ), the push-forward of T under f , by

f♯T (ω) = T (ϕf∗ω), ω ∈ Dm(V ),

where ϕ ∈ C∞
0 (U) is any function such that ϕ ≡ 1 in the compact set suppT ∩ f−1 suppω ⊂ U .

Notice that ϕf∗ω ∈ Dm(U) but it is possible that f∗ω /∈ Dm(U) since supp f∗ω need not be
compact.

Remark 4.41. 1. If f and T are as above, then ∂f♯T = f♯∂T .

2. If Ti → T and f |(suppTi ∪ suppT ) is proper, then f♯Ti → f♯T .

3. Suppose that MW (T ) <∞ for every W ⋐ U , and hence

T (ω) =

∫

〈~T (x), ω(x)〉dµT (x) ∀ω ∈ Dm(U),

where ~T and µT are given by Theorem 4.29. Then the push-forward f♯T is given by

f♯T (ω) =

∫
〈
f∗ω, ~T

〉
dµT =

∫
〈
ω
(
f(x)

)
,
∧

m dfx ~T (x)
〉
dµT (x).
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Notice that the formula makes sense if f is C1, with f | suppT proper. Above
∧

m dfx is the
linear map

∧

m dfx :
∧

m(R
n) → ∧

m(R
d) defined by

∧

m dfx(ei1 ∧ · · · ∧ eim) = dfx
(
ei1
)
∧ · · · ∧ dfx

(
eim
)

for every (i1, . . . , im) ∈
∧
(n,m).

Now we can define the homotopy formula for currents. For that purpose let V ⊂ Rd be open
and let f, g : U → V be smooth mappings. Furthermore, suppose that h : [0, 1]×U → V is smooth
such that

h(0, x) = f(x) and h(1, x) = g(x) ∀x ∈ U.

Since (see Example 4.39)

∂h♯
([
[0, 1]

]
× T

)
= h♯∂

([
[0, 1]

]
× T

)

= h♯
(
[1]× T − [0]× T −

[
[0, 1]

]
× ∂T

)

= h♯
(
[1]× T

)
− h♯

(
[0]× T

)
− h♯

([
[0, 1]

]
× ∂T

)

= g♯T − f♯T − h♯
([
[0, 1]

]
× ∂T

)
,

we have

(4.42) g♯T − f♯T = ∂h♯
([
[0, 1]

]
× T

)
+ h♯

([
[0, 1]

]
× ∂T

)
.

∂T

0

(−) (+)

[0]× T

[1]× T

[

[0, 1]
]

× T

1
h

T

g♯T

−f♯T
Rn

−
[

[0, 1]
]

× ∂T

h♯
([

[0, 1]
]

× T
)

An important special case is the affine homotopy

h(t, x) = tg(x) + (1− t)f(x).

Definition 4.43 (Cone). Let T ∈ Dm(U) with suppT compact. The cone over T is

0⊳ T = h♯
([
[0, 1]

]
× T

)
∈ Dm+1(R

n),

where h(t, x) = tx.

We notice that

∂(0⊳ T ) = T − 0⊳ ∂T.

In particular, if T has no boundary, then T itself is a boundary:

T = ∂(0⊳ T ).
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∂T

∂T = ∅0⊳ T

T

T

For a linear mapping L : Rn → Rd we denote by
∧

m L the linear mapping

∧

mL :
∧

m(R
n) →

∧

m(R
d)

defined by
∧

mL(ei1 ∧ · · · ∧ eim) = Lei1 ∧ · · · ∧ Leim
for every (i1, . . . , im) ∈

∧
(n,m). If f : U → V is smooth (V ⊂ Rd open), we see that

〈v, f∗ω(x)〉 =
〈∧

mdfx(v), ω(x)
〉

for all v ∈ ∧m(R
n), ω ∈ Dm(V ), and x ∈ U . Hence we can state:

Proposition 4.44. If T ∈ Dm(U), with suppT compact and M(T ) <∞ and if f : U → V is C∞,
with f | suppT proper, then

f♯T (ω) =

∫
〈
ω
(
f(x)

)
,
∧

m dfx ~T (x)
〉
dµT (x)

and

(4.45) M(f♯T ) ≤ Lip(f | suppT )mM(T ).

Recall that

Lip(g) := sup

{ |g(x)− g(y)|
|x− y| : x 6= y

}

.

The inequality (4.45) follows from the estimate

∣
∣
∧

m dfx
(
~T (x)

)∣
∣ ≤ Lip(f | suppT )m, x ∈ suppT,

which, in turn, is a consequence of

∣
∣
∧

mL(ei1 ∧ · · · ∧ eim)
∣
∣ ≤ ‖L‖m.

Suppose that h : [0, 1] × U → V is the affine homotopy h(t, x) = tg(x) + (1 − t)f(x) between
smooth mappings f, g : U → V . If T ∈ Dm(U), with M(T ) <∞, we have

(4.46) M
(
h♯
([
[0, 1]

]
× T

))
≤ sup

suppT
|f − g| sup

x∈supp T

(
|dfx|+ |dgx|

)m
M(T ).

This follows from the integral representation (Theorem 4.29) since

−→[
[0, 1]

]
× T = e1 ∧ ~T and µ[

[0,1]
]
×T

= (m1x[0, 1]) × µT ,
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and therefore

h♯
([
[0, 1]

]
× T

)
(ω) =

∫
〈
ω
(
h(t, x)

)
,
∧

m+1dh(t,x)
(
e1 ∧ ~T (x)

)〉
dµ[

[0,1]
]
×T

=

∫ 1

0

(∫
〈
ω
(
h(t, x)

)
,
(
g(x) − f(x)

)
e1 ∧

∧

m(tdgx + (1− t)dfx)~T (x)
〉
dµT

)

dt.

Next we state a couple of further consequences of the homotopy formula.

Lemma 4.47. Let T ∈ Dm(U), with MW (T ) < ∞ and MW (∂T ) < ∞ for every W ⋐ U . If
f, g : U → V ⊂ Rd are C1 smooth with f | suppT = g| suppT proper, then f♯T = g♯T .

Proof. Applying the homotopy formula (4.42) with h(t, x) = tg(x) + (1− t)f(x) we obtain

g♯T (ω)− f♯T (ω) = ∂h♯
([
[0, 1]

]
× T

)
(ω) + h♯

([
[0, 1]

]
× ∂T

)
(ω)

= h♯
([
[0, 1]

]
× T

)
(dω) + h♯

([
[0, 1]

]
× ∂T

)
(ω),

and therefore, by (4.46),

∣
∣g♯T (ω)− f♯T (ω)

∣
∣ =

∣
∣h♯
([
[0, 1]

]
× T

)
(dω) + h♯

([
[0, 1]

]
× ∂T

)
(ω)
∣
∣

≤
∣
∣h♯
([
[0, 1]

]
× T

)
(dω)

∣
∣+
∣
∣h♯
([
[0, 1]

]
× ∂T

)
(ω)
∣
∣

≤ M
(
h♯
([
[0, 1]

]
× T

))
|dω|+M

(
h♯
([
[0, 1]

]
× ∂T

))
|ω|

≤ c
[
M(T )|dω| +M(∂T )|ω|

]
sup

suppT
|g − f | = 0

since, by assumption, f = g in suppT .

With help of the homotopy formula we can define f♯T for a Lipschitz mapping f : U → V ⊂ Rd

provided f | suppT is proper and MW (T ) <∞, MW (T ) <∞ for every W ⋐ U . For that purpose,
let ηε, ε > 0, be a standard mollifier;

ηε(x) = ε−nη(x/ε),

where η : Rn → [0,∞) is C∞, with supp η ⊂ B(0, 1) and
∫
η = 1.

Given a Lipschitz map f : U → V we define the C∞ mapping f (ε) = f ∗ ηε.

Lemma 4.48. Let T ∈ Dm(U), with MW (T ) < ∞ and MW (∂T ) < ∞ for every W ⋐ U . Let
f : U → V ⊂ Rd be Lipschitz with f | suppT proper. Then the limit

f♯T (ω) := lim
ε→0

f
(ε)
♯ T (ω)

exists for every ω ∈ Dm(V ). Moreover, supp f♯T ⊂ f(suppT ) and

MW (f♯T ) ≤
(
ess sup

f−1W

|dfx|
)m

Mf−1W (T )

for every W ⋐ V .

Proof. Fix ω ∈ Dm(V ). If ε > 0 and σ > 0 are sufficiently small (depending on ω ∈ Dm(V )), the
homotopy formula with h(t, x) = tf (ε)(x) + (1− t)f (σ)(x) implies

f
(ε)
♯ T (ω)− f

(σ)
♯ T (ω) = ∂h♯

([
[0, 1]

]
× T

)
(ω) + h♯

([
[0, 1]

]
× ∂T

)
(ω)

= h♯
([
[0, 1]

]
× T

)
(dω) + h♯

([
[0, 1]

]
× ∂T

)
(ω).
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For sufficiently small ε > 0 and σ > 0 we get from (4.46)

∣
∣f

(ε)
♯ T (ω)− f

(σ)
♯ T (ω)

∣
∣ ≤ c sup

f−1K∩suppT

∣
∣f (ε) − f (σ)

∣
∣Lip(f)m,

where K ⊂ V is a compact set containing suppω in its interior. Since f (ε)
ε→0−−−→ f uniformly on

compact subsets of U , the claims follow.

Theorem 4.49 (Constancy theorem). Let U ⊂ Rn be a domain (i.e. open and connected). If
T ∈ Dn(U), with ∂T = 0 and MW (T ) <∞ for all W ⋐ U , then there exists a constant c such that

T = c[U ],

that is

T
(
ϕdx1 ∧ · · · ∧ dxn

)
= c

∫

U
ϕdmn

for every ϕ ∈ C∞
0 (U).

Note that m = n above.

Proof. By Theorem 4.29 there exist a Radon measure µT and a µT -measurable function σ : U →
{−1, 1} such that

T (ω) =

∫

〈ω(x), σ(x)e1 ∧ · · · ∧ en〉dµT (x) =
∫

σϕdµT =

∫

ϕdµ+T −
∫

ϕdµ−T

for every ω = ϕdx1 ∧ · · · ∧ dxn ∈ Dn(U), where µ+T = µT x{σ = 1} and µ−T = µTx{σ = −1}. Let
ηε, ε > 0, be as above. Define

Tε(ω) := T (ηε ∗ ω)
for 0 < ε < dist(suppω, ∂U) and for continuous n-forms ω ∈ C0(U,

∧n(Rn)) with compact support
in U . Here ηε ∗ ω = ηε ∗ ϕdx1 ∧ · · · ∧ dxn if ω = ϕdx1 ∧ · · · ∧ dxn. We first observe that, for fixed
W ⋐ U and ε > 0, the set

S = {ηε ∗ ω : ω ∈ C0(U,
∧

n(Rn), suppω ⊂ W̄ ,

∫

U
|ω|dmn ≤ 1}

is compact in C0(U,
∧n(Rn)) with respect to the norm (| · |) topology. Hence, by continuity of T

also with respect to the norm topology, there exists a constant c = c(T,W, ε) such that

(4.50) |Tε(ω)| ≤ c

∫

U
|ω|dmn

for every ω ∈ C0(U,
∧n(Rn), with suppω ⊂ W̄ . On the other hand,

Tε(ω) = T (ηε ∗ ω) =
∫

ηε ∗ ϕdµ+T −
∫

ηε ∗ ϕdµ−T

if ω = ϕdx1 ∧ · · · dxn, ϕ ∈ C0(W ). Applying the Riesz representation theorem to positive linear
functionals

ϕ 7→
∫

ηε ∗ ϕdµ±T , ϕ ∈ C0(W ),



62 Geometric Measure Theory

we get Radon measures µ+ε and µ−ε such that

∫

ηε ∗ ϕdµ+T =

∫

ϕdµ+ε and

∫

ηε ∗ ϕdµ−T =

∫

ϕdµ−ε .

Hence, by (4.50),

∣
∣
∣
∣

∫

ϕdµ+ε −
∫

ϕdµ−ε

∣
∣
∣
∣
= |Tε(ω)| ≤ c

∫

U
|ω|dmn = c

∫

suppϕ
|ϕ|dmn,

and therefore µ+ε , µ
−
ε ≪ mn. The Radon-Nikodym theorem then implies that there exists gε ∈

L1(mn) such that

(4.51) Tε(ω) =

∫

ϕgε dmn

for ω = ϕdx1 ∧ · · · ∧ dxn, ϕ ∈ C0(W ). On the other hand, since ∂T = 0 by assumption, we have

(4.52) Tε(dω) = T (ηε ∗ dω) = T
(
d(ηε ∗ ω)

)
= ∂T (ηε ∗ ω) = 0

if ω ∈ C1
0 (U,

∧n−1(Rn)), with suppω ⊂W . Applying this to

ω = ϕdx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn,

for which

dω = (−1)j−1 ∂ϕ

∂xj
dx1 ∧ · · · ∧ dxn,

we get

(4.53) Tε(dω) = (−1)j−1

∫
∂ϕ

∂xj
gε dmn = 0

for all ϕ ∈ C1
0 (W ) and for all j ∈ {1, . . . , n}. It follows that the distributional gradient of gε

vanishes mn-a.e. and therefore gε = cε mn-a.e., where cε is a constant1. Letting then ε → 0 and
W ր U , we obtain (by continuity of T )

T (ω) = lim
ε→0

Tε(ω) = lim
ε→0

cε

∫

U
ϕdmn = c

∫

U
ϕdmn = c[U ](ϕ)

for all ω = ϕdx1 ∧ · · · ∧ dxn ∈ Dn(U), where the limit

lim
ε→0

cε = c

exists since the limit

lim
ε→0

Tε(ω) = lim
ε→0

cε

∫

U
ϕdmn

exists.

Next we want to weaken the assumption ∂T = 0 to M(∂T ) <∞. Before we state the theorem
(Theorem 4.65), which a generalization of the Constancy theorem, we first discuss about functions
of bounded variation. We refer to e.g. [EG], [Si], [Ho3] for more details.

1This follows from Poincaré’s inequality for W 1,1-functions.
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Definition 4.54. Let U ⊂ Rn be open and u ∈ L1
loc(U). Define

∫

U
|Du| := sup

{∫

U
udiv g : g = (g1, . . . , gn) ∈ C1

0 (U ;Rn), |g| ≤ 1

}

.

Above
∫

U |Du| should be understood just as a notation (not an integral). Furthermore,

div g =
n∑

i=1

∂gi
∂xi

is the usual divergence.

Example 4.55. (a) If u ∈ C1(U), then integration by parts implies that

∫

U
udiv g = −

∫

U
∇u · g ∀g ∈ C1

0 (U ;Rn),

and so ∫

U
|Du| =

∫

U
|∇u|.

(b) More generally, if u belongs to the Sobolev space W 1,1
loc (U), then again

∫

U
|Du| =

∫

U
|∇u|,

where ∇u is the distributional gradient of u.

Definition 4.56. A function u ∈ L1
loc(U) is said to have bounded variation in U if

∫

U
|Du| <∞.

We denote by BV(U) the vector space of all functions u ∈ L1(U) with bounded variation in U .

Definition 4.57. Similarly, a function u ∈ L1
loc(U) has locally bounded variation and belongs to

BVloc(U) if
∫

V
|Du| <∞

for every relatively compact open set V ⋐ U .

The proof of the following theorem is an application of the Riesz representation theorem.

Theorem 4.58. For every u ∈ BVloc(U) there exists a Radon measure µ on U and a µ-measurable
mapping σ : U → Rn such that

(i) |σ(x)| = 1 for µ-a.e. x ∈ U ;

(ii)
∫

U
udiv g dx = −

∫

U
g · σ dµ

for every g ∈ C1
0 (U ;Rn).
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Remark 4.59. 1. If u ∈ BVloc(U), we denote by ‖Du‖ the Radon measure µ given by Theo-
rem 4.58 and by

[Du] = ‖Du‖xσ
the vector valued measure d[Du] = σ d‖Du‖. Hence

∫

U
udiv g = −

∫

U
g · σ d‖Du‖ = −

∫

U
g · d[Du]

for g ∈ C1
0 (U ;Rn).

2. If u ∈ BV(U) and V ⋐ U is an open subset, then

‖Du‖(V ) = sup

{∫

V
udiv g dx : g ∈ C1

0 (U ;Rn), |g| ≤ 1

}

.

Hence, using our earlier notation,
∫

V
|Du| = ‖Du‖(V ).

Theorem 4.60 (Lower semicontinuity). Let U ⊂ Rn be open and uj ∈ BV(U), j ∈ N such that
uj → u in L1

loc(U). Then

(4.61)

∫

U
|Du| ≤ lim inf

j→∞

∫

U
|Duj |.

Theorem 4.62. The vector space BV(U) equipped with the BV-norm

‖u‖BV := ‖u‖L1(U) +

∫

U
|Du|

is a Banach space.

Functions in Sobolev spaces W 1,p(U), 1 ≤ p < ∞, can be approximated by C∞(U) functions
in the Sobolev norm

‖u‖1,p := ‖u‖p + ‖|∇u|‖p.
In fact, W 1,p(U) is the completion of C∞(U) in the Sobolev norm and since BV(U) 6= W 1,1(U),
functions in BV(U) can not be approximated in the BV-norm. However,

Theorem 4.63 (Approximation). Let u ∈ BV(U). Then there exists a sequence uj ∈ C∞(U), j ∈
N, such that

lim
j→∞

∫

U
|uj − u| = 0,

lim
j→∞

∫

U
|∇uj | =

∫

U
|Du|.

Suppose that u ∈ BV(U) and uj ∈ C∞(U) are as above. For each j ∈ N let µj be the vector-
valued Radon-measure defined by

µj(B) =

∫

B∩U
∇uj dx

for Borel sets B ⊂ Rn. Furthermore, let µ be the vector-valued Radon measure

µ(B) =

∫

B∩U
d[Du] =

∫

B∩U
σ d‖Du‖.

Then µj ⇀ µ.
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Theorem 4.64 (Compactness). Let U ⊂ Rn be an open set. If uj ∈ BVloc(U), j ∈ N, is a sequence
such that

sup
j

(

‖uj‖L1(W ) +

∫

W
|Duj |

)

<∞

for every W ⋐ U , there exist a subsequence (ujk) and u ∈ BVloc(U) such that ujk → u in L1
loc(U)

and ∫

W
|Du| ≤ lim inf

jk→∞

∫

W
|Dujk |

for every W ⋐ U .

Let us now return to consider n-currents. In the next theorem, which is a generalization of the
Constancy theorem, we weaken the assumption ∂T = 0 to M(∂T ) <∞.

Theorem 4.65. Let T ∈ Dn(U) such that M(∂T ) <∞ and MW (T ) <∞ for every W ⋐ U . Then
there exists g ∈ BVloc(U) such that

(4.66) T (ω) =

∫

ϕg dmn,

for all ω = ϕdx1 ∧ · · · ∧ dxn ∈ Dn(U).

The proof is a modification of the proof of the Constancy theorem. Instead of equality (4.52)
we now have an estimate

(4.67)

∣
∣
∣
∣

∫
∂ϕ

∂xj
gεdmn

∣
∣
∣
∣
= |Tε(dω)| ≤ sup |ηε ∗ ϕ|M(∂T ) ≤ cεM(∂T )

if ω = ϕdx1 ∧ · · · dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn, with ϕ ∈ C1
0 (W ), |ϕ| ≤ 1. Here cε is a constant that

depends on ε and cε → 1 as ε→ 0 since ηε ∗ ϕ→ ϕ uniformly. We apply (4.67) with

ω = (−1)jΦjdx
1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · dxn,

where Φj ∈ C1
0 (U), suppΦj ⊂ W, is the jth-coordinate function of Φ = (Φ1, . . . ,Φn) ∈ C1

0 (U,R
n),

with |Φ| ≤ 1. We obtain

∣
∣
∣
∣

∫

U
(div Φ)gεdmn

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∫

U

n∑

j=1

∂Φj
∂xj

gεdmn

∣
∣
∣
∣
∣
∣

≤ ncεM(∂T ) ≤ 2nM(∂T )

for all Φ ∈ C1
0 (U,R

n), with |Φ| ≤ 1, and 0 < ε < dist(W,∂U) small enough. Hence gε ∈ BV(W ). It
follows from the Poincaré’s inequality for BV -functions (see e.g. [EG, 5.6.1], [Si, Lemma 6.4]) that
gε is locally uniformly bounded in L1(U). We conclude (using Theorem 4.64) that there exists a
sequence εk ց 0 such that gεk → g in L1

loc(U) with g ∈ BVloc(U). Moreover, it follows from (4.51)
that

T (ω) =

∫

U
ϕg dmn

for ω = ϕdx1 ∧ · · · ∧ dxn ∈ Dn(U).
Writing an arbitrary α ∈ Dn−1(U) as

α =

n∑

j=1

(−1)jΦjdx
1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · dxn
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we first observe that

dα = (div Φ)dx1 ∧ · · · ∧ dxn, Φ = (Φ1, . . . ,Φn),

and therefore

∂T (α) = T (dα) = T
(
(div Φ)dx1 ∧ · · · ∧ dxn

)
=

∫

U

(
divΦ

)
g dmn

by (4.66). Finally, it follows directly from definitions that

MW (T ) =

∫

W
|g|dmn

and

MW (∂T ) =

∫

W
|Dg| = ‖Dg‖(W )

for every W ⋐ U .

The last theorem in this subsection deals with restrictions of m-currents to subsets of Rn

with ”small” orthogonal projections onto Rm. To state the result, we define for each multi-index
I = (i1, . . . , im) ∈

∧
(n,m) the orthogonal projection PI : R

n → Rm by

PI(x) = Pα(x1, . . . , xn) = (xi1 , . . . , xim) ∈ Rm.

Theorem 4.68. Suppose that E ⊂ Rn is a closed subset of an open set U ⊂ Rn such that
Hm

(
PIE

)
= 0 for every I ∈ ∧(n,m). Then TxE = 0 for all T ∈ Dm(U), with MW (T ) < ∞

and MW (∂T ) <∞.

Proof. Let ω ∈ Dm(U). We can write

ω =
∑

I∈
∧

(n,m)

ωIdx
I , dxI = dxi1 ∧ · · · ∧ dxim , I = (i1, . . . , im).

Hence

T (ω) =
∑

I

T (ωIdx
I) =

∑

I

(TxωI)(dx
I)

=
∑

I

(TxωI)
(
P ∗
I (dy

1 ∧ · · · ∧ dym)
)

(4.69)

=
∑

I

PI♯(TxωI)(dy
1 ∧ · · · ∧ dym),

where we have denoted by dy1 ∧ · · · ∧ dym the standard basis m-form in Rm. The push-forward
makes sense since supp(TxωI) is a subset of suppωI which is a compact subset of U .

For any β ∈ Dm−1(U)

∂(TxωI)(β) = (TxωI)(dβ) = T (ωIβ) = T
(
d(ωIβ)

)
− T (dωI ∧ β)

= ∂T (ωIβ)− T (dωI ∧ β),

and so

(4.70) MW

(
∂(TxωI)

)
≤ MW (∂T )|ωI |+MW (T )|dωI |.
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We obtain

M
(
∂PI♯(TxωI)

)
= M

(
PI♯∂(TxωI)

)
≤ c(n,m)M

(
∂(TxωI)

)
<∞

by (4.45), (4.70), and the assumptions MW (T ),MW (∂T ) < ∞ ∀W ⋐ U . Therefore, by Theo-
rem 4.65, there exists g ∈ BV(PIU) such that

PI♯(TxωI)(β) =

∫

PIU
〈β, e1 ∧ · · · ∧ em〉g dmm,

and hence

PI♯(TxωI)xPIE = 0

since mm(PIE) = 0. Assuming, without loss of generality, that E is compact, we have

PI♯(TxωI) = PI♯(TxωI)x(R
m \ PIE) = PI♯

(

(TxωI)x
(
Rn \ P−1

I (PIE)
))

.

This implies

M
(
PI♯(TxωI)

)
≤ M

(
(TxωI)x

(
Rn \ P−1

I (PIE)
))

≤ M
(
(TxωI)x(R

n \ E)
)

(4.71)

≤ MW

(
Tx(Rn \ E)

)
)|ωI |

for every open W such that suppω ⊂W ⋐ U . Combining (4.69) and (4.71) we get

MW (T ) ≤ cMW

(
Tx(Rn \ E)

)

for all open W ⋐ U . In particular,

M(TxE) = MW (TxE) ≤ cMW

(
Tx(Rn \E)

)

for all W ⋐ U , with E ⊂ W . Choosing a descending sequence of open sets Wi ⋐ U such that
E = ∩iWi, we get

M(TxE) ≤ cMWi

(
Tx(Rn \E)

)
→ 0

which implies TxE = 0.

4.72 Rectifiable currents

Definition 4.73. An m-current T ∈ Dm(U) in an open set U ⊂ Rn is called a rectifiable m-current
if there exist

1. an m-rectifiable Borel set E ⊂ U , with Hm(E) <∞;

2. an Hm-integrable positive function θ : E → (0,∞), and

3. an Hm-measurable mapping ~T : E → ∧

m(R
n) such that, for cHm-a.e. x ∈ E, ~T (x) =

v1(x)∧· · ·∧vm(x) where v1(x), . . . , vm(x) is an orthonormal basis of the approximate tangent
space Tmx E, and that

T (ω) =

∫

E

〈
ω(x), ~T (x)

〉
θ(x)dHm(x)

for all ω ∈ Dm(U). Note that |~T (x)| = 1 for Hm-a.e. x ∈ E.
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The function θ is called the multiplicity of T and ~T is called the orientation for T . We write
T = τ(E, θ, ~T ). Such a current T is called an integer multiplicity (rectifiable) m-current , denoted
T ∈ Rm(U), if θ is integer valued.

Example 4.74. (1) If T1, T2 ∈ Rm(U) and p1, p2 ∈ N, then p1T1 + p2T2 ∈ Rm(U).

(2) If T1 = τ(E1, θ1, ~T1) ∈ Rm(U) and T2 = τ(E2, θ2, ~T2) ∈ Rk(V ), then

T1 × T2 = τ(E1 × E2, θ1θ2, ~T1 ∧ ~T2) ∈ Rm+k(U × V ).

(3) If f : U → V is Lipschitz, T = τ(E, θ, ~T ) ∈ Rm(U), and f | suppT is proper, we can define
f♯T ∈ Dm(V ) by

f♯T (ω) =

∫

E

〈
ω
(
f(x)

)
,
∧

mdEfx ~T (x)
〉
θ
(
f(x)

)
dHm(x)

for ω ∈ Dm(V ). Since
∣
∣
∣

∧
mdEfx ~T (x)

∣
∣
∣ = JEf (x),

we get from the area formula that

(4.75) f♯T (ω) =

∫

fE

〈

ω(y),
∑

x∈f−1(y)∩E+

θ(x)

∧
mdEfx ~T (x)

∣
∣
∧
mdEfx ~T (x)

∣
∣

〉

dHm(y),

where E+ = {x ∈ E : JEf (x) > 0}. Notice that fE is m-rectifiable, and therefore the
approximate tangent space Tmy fE exists at Hm-a.e. x ∈ fE. Hence at points y ∈ fE where

Tmy fE exists and for which Tmx E and dEfx exist for all x ∈ f−1(y) ∩ E+, we have

∧
mdEfx ~T (x)

∣
∣
∧
mdEfx ~T (x)

∣
∣
= ±τ1 ∧ · · · ∧ τm,

where τ1, . . . , τm is an orthonormal basis of Tmy fE. Hence we obtain from (4.75)

f♯T (ω) =

∫

fE
〈ω(y), ~S(y)〉N(y)dHm(y),

where ~S(y) is an orientation of Tmy fE and N(y) is a positive integer satisfying

∑

x∈f−1(y)∩E+

θ(x)

∧
mdEfx ~T (x)

∣
∣
∧
mdEfx ~T (x)

∣
∣
= N(y)~S(y).

In conclusion, f♯T ∈ Rm(V ).

Definition 4.76. An m-current P ∈ Dm(U) is a polyhedral (m-)chain if there exist m-dimensional
oriented simplices π1, . . . , πk ⊂ U and p1, . . . , pk ∈ R such that

P =

k∑

i=1

pi[πi].

If p1, . . . , pk ∈ Z, P is called an integral polyhedral chain and we denote

P ∈ Pm(U).
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Recall that an m-simplex π is the convex hull of its m + 1 affinely independent vertices
a0, . . . , am ∈ Rm, that is a1 − a0, a2 − a0, . . . , am − a0 are linearly independent and

π =

{
m∑

i=0

λiai :

m∑

i=0

λi = 1, λi ≥ 0 ∀i
}

.

Theorem 4.77. If Ti ∈ Rm(U) is a sequence (of integer multiplicity rectifiable m-currents) with

sup
i∈N

(MW (Ti) +MW (∂Ti)) <∞

for all W ⋐ U , then there exist a subsequence Tij and T ∈ Rm(U) such that Tij → T .

Note that the existence of a subsequence and an m-current T ∈ Dm(U) such that Tij → T
follows from the Banach-Alaoglu theorem; see Theorem 4.36. The difficulty is to prove that T is
an integer multiplicity rectifiable current; we will return to this later.

The next theorem gives a criterion of rectifiability.

Theorem 4.78. Let T ∈ Dm(U) with M(T ) <∞. Then T ∈ Rm(U) if and only if for every ε > 0
there exist P ∈ Pm(Rd), d ≥ m, and a Lipschitz map f : Rd → Rn such that

(4.79) M(T − f♯P ) < ε.

Proof. Idea: ⇐ Let T ∈ Dm(U) with M(T ) < ∞. Each m-simplex is a subset of Rm ⊂ Rd

and hence f♯P is an m-rectifiable integer multiplicity current. Apply (4.79) with εi ց 0, i.e. let
Pi ∈ Pm(Rd) such that

M(T − f♯Pi) < εi.

Then, for every ω ∈ Dm(U),

|T (ω)− f♯Pi(ω)| = |(T − f♯Pi)(ω)| ≤ M(T − f♯Pi)|ω| → 0.

Hence T , as a limit of integer multiplicity m-currents f♯Pi ∈ Rm(R
n), is an integer multiplicity

m-current; see Lemma 4.80.
⇒ Let ε > 0 and T = τ(E, θ, ~T ) ∈ Rm(U). We may assume (ignoring a set of Hm-measure

zero) that E is a countable union of Lipschitz images fiAi) of subsets Ai ⊂ Rm. Furthermore, we
may assume that the sets Ai are disjoint and that θ|fiAi takes a constant value θi ∈ N. Then we
take θi copies Ai,j, j = 1, . . . , θi of Ai such that all the sets Ai,j, i ∈ N, j = 1, . . . , θi, are disjoint.
Now we can define a Lipschitz map (after applying the corollary of the McShane-Whitney extension
theorem) f : Rm → Rn such that fAi,j = fAi and that f preserves orientation. On the other hand,
each Ai,j can be approximated by finitely many m-simplices and hence T can be approximated (in
mass) by an integral polyhedral chain.

In the above proof, the step M(T − f♯Pi) → 0 ⇒ f♯Pi → T is relatively easy.

Lemma 4.80. The set of integer multiplicity rectifiable currents in Dm(U) is complete with respect
to the family of seminorms {MW : W ⋐ U}.

Proof. Let Ti = τ(Ei, θi, ~Ti) ∈ Rm(U), i ∈ N be a Cauchy sequence with respect to the family
{MW : W ⋐ U}. Then

(4.81) MW (Ti − Tj) =

∫

W
|θi ~Ti − θj ~Tj |dHm < ε(W, j)
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for i ≥ j, where ε(W, j) ց 0 as j → ∞, and we have made a convention θk = 0 and ~Tk = 0 in
U \ Ek. Since |~Tk(x)| ≡ 1 in Ek, we get

(4.82)

∫

W
|θi − θj|dHm < ε(W, j), i ≥ j.

Hence θi → θ in L1
loc(U,Hm), where θ is integer valued. From (4.82), we get

(4.83) Hm
(
(E+ \ Ej) ∪ (Ej \E+)

)
< ε(W, j),

where E+ = {x ∈ U : θ(x) > 0}. Since

θi|~Ti − ~Tj| = |θi ~Ti − θj ~Tj + (θj − θi)~Tj | ≤ |θi ~Ti − θj ~Tj|+ |θj − θi||~Tj |,

we have ∫

W
θi|~Ti − ~Tj|dHm < 2ε(W, j), i ≥ j,

and therefore ~Ti converges in L1
loc(Hm) to ~T : U → ∧

m(R
n), where ~T is simple and |~T | = 1 in

E+. Since ~Tj ∈ ∧m(TxEj) for Hm-a.e. x ∈ Ej and TxEj = TxE+ in Ej ∩ E+ except a set of

Hm-measure ≤ ε(W, j) by (4.83), we conclude that ~T ∈ ∧m(TxE+), and so M(T − Tj) → 0, with

T = τ(E+, θ, ~T ) ∈ Rm(U).

4.84 Slicing

In this subsection we introduce the slicing of a current by level sets of a Lipschitz function. [Recall
the co-area formula and, in particular, Theorem 2.59, where we ”sliced” an m-rectifiable set E by
level sets of a Lipschitz function.]

Definition 4.85. A current T ∈ Dm(U) is normal , denoted by T ∈ Nm(U), if suppT is compact
and

M(T ) +M(∂T ) <∞.

Definition 4.86. Let T ∈ Nm(U) be normal and f : Rn → R a Lipschitz map. The slice of T with
f and t ∈ R is

〈T, f, t〉 := (∂T )x{x : f(x) > t} − ∂
(
Tx{x : f(x) > t}

)
∈ Dm−1(U).

∂Tx{f > t}

T

f ≤ t f > t
〈T, f, t〉

Tx{f > t}

Theorem 4.87. The slices have the properties:

(1)
〈T, f, t〉 = ∂

(
Tx{x : f(x) < t}

)
− (∂T )x{x : f(x) < t}

except at most countably many t;
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(2)
supp〈T, f, t〉 ⊂ f−1(t) ∩ suppT ;

(3)

M
(
〈T, f, t〉

)
≤ Lip(f) lim inf

hց0

1

h
µT
(
{x : t ≤ f(x) ≤ t+ h}

)
;

(4)
∫ b

a
M
(
〈T, f, t〉

)
dt ≤ Lip(f)µT

(
{x : a < f(x) < b}

)
;

(5)
∂〈T, f, t〉 = −〈∂T, f, t〉;

(6) 〈T, f, t〉 is normal for almost every t.

Proof. Idea of (some) proofs: (1) holds for every t for which

(µT + µ∂T )
(
{x : f(t) = t}

)
= 0.

(2) is easy. To prove (3), we approximate the characteristic function

χ{x : f(x)>t}

by a sequence of C∞ functions g such that g(x) = 0 if f(x) ≤ t, f(x) = 1 if f(x) ≥ t+ h, and

Lip(g) ≤ λLip(f)

h
,

where λ > 1, λ ≈ 1. Then

M
(
〈T, f, t〉

)
≈ M

(
(∂T )xg − ∂(Txg)

)

=M(Txdg)

≤ Lip(g)µT
(
{x : t ≤ f(x) ≤ t+ h}

)
.

(4) follows from (3) by integration, (5) is clear, and finally (6) follows from (4) and (5).

Next we slice integer multiplicity rectifiable currents.

Theorem 4.88. Let T = τ(E, θ, ~T ) ∈ Rm(U), with M(∂T ) <∞ and let f : Rn → R be a Lipschitz
function. Then for a.e. t ∈ R:

(1) 〈T, f, t〉 = τ(Et, θt, ~Tt), where

Et = E ∩ f−1(t),

θt(x) =

{

θ(x), if x ∈ Et and ∇Ef(x) 6= 0;

0, if x ∈ Et and ∇Ef(x) = 0,

~Tt(x) = ~T (x)x
∇Ef(x)

|∇Ef(x)| ,

(2)
∫ ∞

−∞
M
(
〈T, f, t〉

)
dt =

∫

E
|∇Ef ||θ|dHm ≤ Lip(f)M(T ),
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(3) 〈T, f, t〉 ∈ Rm−1(U), with M
(
∂〈T, f, t〉

)
<∞ and ∂〈T, f, t〉 = −〈∂T, f, t〉.

The interior multiplication x :
∧

q(V )×∧p(V ) → ∧

q−p(V ) is characterized by the condition

〈vxα, β〉 = 〈v, α ∧ β〉

whenever v ∈ ∧q(V ), α ∈ ∧p(V ), β ∈ ∧q−p(V ). Moreover, there is the standard biduality between
finite dimensional inner product spaces

∧

m(V ) and
∧m(V ). That is, for every η ∈ ∧m(V ) there

exists a unique w ∈ ∧m(V ) such that

(4.89) 〈v,w〉 = 〈η, v〉 ∀v ∈
∧

m(V ).

Hence, in particular, ~T (x)x∇Ef(x) ∈ ∧m−1(T
m−1
x Et) is characterized by the property

〈~T (x)x∇Ef(x), η〉 = 〈~T (x), dEfx ∧ η〉

for all η ∈ ∧m−1(Tm−1
x Et).

Proof of Theorem 4.88. Let h : Rn → R be Lipschitz and let hε = ηε ∗h be as before. Then hε → h
locally uniformly as ε→ 0. Now

∂T (hεω) = T
(
d(hεω)

)
= T (dhε ∧ ω) + T (hεdω)

for all ω ∈ Dm(U). Here

∂T (hεω) =

∫

〈
→
∂T , hεω〉dµ∂T →

∫

〈
→
∂T , hω〉dµ∂T = (∂Txh)(ω)

and

T (hεdω) =

∫

〈~T , hεdω〉dµT →
∫

〈~T , hdω〉dµT = (Txh)(dω) = ∂(Txh)(ω)

as ε→ 0. So,
(∂Txh)(ω) = lim

ε→0
T (dhε ∧ h) + ∂(Txh)(ω),

where

T (dhε ∧ h) =
∫

E
〈~T (x), dhε(x) ∧ ω〉θ(x)dHm(x)

=

∫

E
〈~T (x), dEhε(x) ∧ ω〉θ(x)dHm(x)

(4.89)
=

∫

E
〈~T (x)x∇Ehε(x), ω(x)〉θ(x)dHm(x)

→
∫

E
〈~T (x)x∇Eh(x), ω(x)〉θ(x)dHm(x).

2 Hence we get from the convergences above that

(∂Txh)(ω) =

∫

E
〈~T (x)x∇Eh(x), ω(x)〉θ(x)dHm(x) + ∂(Txh)(ω)

2The last convergence holds since ∇
Ehε → ∇

Eh weakly in L2(Hm
xθ) which, in turn, can be proven by noticing

that E = ⊔
∞

i=0Ei, H
m(E0) = 0, and Ei ⊂ Mi, with Mi a C1-smooth submanifold.
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for Lipschitz functions h : Rn → R.
Let then f : Rn → R be Lipschitz, t ∈ R, and ε > 0. Define a continuous function γε : R → R

by

γε(s) =







0, if s < t− ε,

linear, if t− ε ≤ s ≤ t,

1, if s > t

and gε = γε ◦ f . We then have

(4.90) (∂Txgε)(ω) =

∫

E
〈~T (x)x∇Egε(x), ω(x)〉θ(x)dHm(x) + ∂(Txgε)(ω).

Now
gε(x)

ε→0−−−→ χ{f>t}(x),

so

(4.91) (∂Txgε)(ω) =

∫

〈
→
∂T , gεω〉dµ∂T →

∫

〈
→
∂T , χ{f>t}ω〉dµ∂T = ∂Tx{f > t}(ω).

Similarly,

(4.92) (Txgε)(dω) =

∫

〈~T , gεdω〉dµT →
∫

〈~T , χ{f>t}dω〉dµT = ∂
(
Tx{f > t}

)
(ω).

By the chain rule

∇Egε(x) = ∇E(γε ◦ f)(x) = γ′
(
f(x)

)
∇Ef(x)

=

{

0, if f(x) < t− ε or f(x) > t,
1
ε∇Ef(x), if t− ε < f(x) < t,

so
∫

E
〈~T (x)x∇Egε(x), ω(x)〉θ(x)dHm(x) =

1

ε

∫

{x∈E : t−ε<f(x)<t}

〈~T (x)x∇Ef(x), ω(x)〉θ(x)dHm(x)

=
1

ε

∫

{x∈E : t−ε<f(x)<t}

〈

~Tx
∇Ef

|∇Ef | , ω
〉

|∇Ef |θdHm

=
1

ε

∫ t

t−ε

(∫

Es

〈~Ts, ω〉θs dHm−1

)

ds

→
∫

Et

〈~Tt, ω〉θt dHm−1

for a.e. t ∈ R. Recalling (4.90)-(4.92) and the definition of 〈T, f, t〉 we get

〈T, f, t〉 = (∂T )x{f > t} − ∂(Tx{f > t})
= lim

ε→0
(∂Txgε)− lim

ε→0
∂(Txgε)

= lim
ε→0

∫

E

〈
Tx∇Egε, ·

〉
θdHm

=

∫

Et

〈~Tt, ·〉θtdHm−1

= τ(Et, θt, ~Tt),
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and therefore (1) holds. (2) follows from (1) and the co-area formula. (3) follows from (1), Theo-
rem 2.59, and Theorem 4.87 (5).

It is possible to slice an current T ∈ Dm(U) with a Lipschitz map f = (f1, . . . , fk)) : R
n →

Rk, k ≤ m, and a value y = (y1, . . . , yk) ∈ Rk by iterating the slicing with fi and yi:

〈T, f, y〉 = 〈〈· · · 〈〈T, f1, y1〉, f2, y2〉 · · · 〉 , fk, yk〉 ∈ Dm−k(U).

4.93 Deformation theory

The deformation theorem is one of the fundamental results and it provides a useful approximation
of a normal current T by a polyhedral chain P lying on a certain m-skeleton such that the error
is of the form T − P = ∂R + S. The main error term is ∂R, where R is the (m + 1)-dimensional
surface through which T is deformed to P . The other error term S arises in moving ∂T into the
skeleton.

We will only state the result and sketch the (long and technical) proof. First we introduce some
notation: Fix k,m, n ∈ N, 0 < m < n, and ε > 0. We denote by

Qε = [0, ε]n ⊂ Rn

the closed n-dimensional cube of side length ε and by

Lε,k =

k⋃

j=1

Lε,j = {π : π j-dimen. closed face of some Qε + pε, p ∈ Zn}

the k-skeleton of mesh ε. Thus the elements of

• Lε,0 are singletons (vertices),

• Lε,1 are closed line segments (edges) of length ε,

• Lε,2 are closed squares of side length ε, · · ·

• Lε,n are the closed n-cubes Qε + pε, p ∈ Zn, of side length ε.

Moreover, we denote by Vε,1, . . . , Vε,N , N =
( n
m+1

)
the (m+ 1)-dimensional affine subspaces of Rn

that contain some (m+ 1)-face of Qε. Finally,

Pε,j : R
n → Vε,j

denotes the orthogonal projection onto Vε,j.

Theorem 4.94 (Deformation theorem). Let ε > 0 and T ∈ Dm(R
n), with M(T ) +M(∂T ) < ∞.

Then there are P, S ∈ Dm(R
n) and R ∈ Dm+1(R

n) such that

T − P = ∂R+ S,

where P,R, and S satisfy the following:

(4.95) P =
∑

π∈Lε,m

απ[π], απ ∈ R,

(4.96) M(P ) ≤ cM(T ), M(∂P ) ≤ cM(∂T ),
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(4.97) M(R) ≤ cεM(T ), M(S) ≤ cεM(∂T ),

with c = c(n,m), and

suppP ∪ suppR ⊂ {x ∈ Rn : dist(x, suppT ) < 2ε
√
n},

supp∂P ∪ suppS ⊂ {x ∈ Rn : dist(x, supp ∂T ) < 2ε
√
n}.

If T ∈ Rm(R
n), also P and R can be chosen to be integer multiplicity with απ ∈ Z. If, in addition,

∂T ∈ Rm−1(R
n), also S can be chosen to be integer multiplicity.

For the proof, we may assume that ε = 1. Indeed, the ”scaled version” 4.94 follows from the
”unscaled” one where ε = 1 by first applying the homothety x 7→ x/ε, then applying the ”unscaled
version” and then scaling back by x 7→ εx. In particular, the linear dependence of the constant cε
in (4.97) on ε is then obvious.

The main tool in the proof of the deformation theorem is the following lemma that provides a
suitable class of retractions to push-forward T into the m-skeleton L1,m (in the unscaled version).
We denote by q = (1/2, . . . , 1/2) the center of the unit cubeQ = Q1 and abbreviate Lk = L1,k, Lk =
L1,k, and Pj = P1,j. Given a point a ∈ B(q, 1/4), we denote

Ln−m−1(a) = a+ Ln−m−1 (shifted skeleton)

and
Ln−m−1(a; ρ) = {x ∈ Rn : dist

(
x,Ln−m−1(a)

)
< ρ}, ρ ∈ (0, 1/4).

Then
dist

(
Ln−m−1(a), Lm

)
≥ 1/4 ∀a ∈ B(q, 1/4).

Lemma 4.98. For every a ∈ B(q, 1/4) there is a locally Lipschitz map

ψ : Rn \ Ln−m−1(a) → Rn \ Ln−m−1(a)

such that

ψ
(
Q \ Ln−m−1(a)

)
= Q ∩ Lm,

ψ|Q ∩ Lm = idQ∩Lm ,

|Df(x)| ≤ c/ρ

for mn-a.e. x ∈ Q \ Ln−m−1(a; ρ), ρ ∈ (0, 1/4), with c = c(n,m) and that

ψ(z + x) = z + ψ(x)

for all x ∈ Rn \ Ln−m−1(a) and z ∈ Zn.

Thus ψ is a Zn-periodic retraction of Rn \Ln−m−1(a) onto Lm. The rough idea is then to define

P̃ = ψ♯T,

R = h♯
([
[0, 1]

]
× T

)
,

and

S1 = h♯
([
[0, 1]

]
× ∂T

)
,

where h(t, x) = tx+ (1− t)ψ(x), so that the homotopy formula gives

T = P̃ + ∂R+ S1.
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Choosing the point a ∈ B(q, 1/4) properly (depending on T ) we may get estimates

M(P̃ ) ≤ cM(T ),

M(∂P̃ ) ≤ cM(∂T ),

M(R) ≤ cM(T ),

and

M(S1) ≤ cM(∂T ).

We notice that P̃ need not be a polyhedral chain. It is used to choose appropriate multiplicities of
the m-faces in the m-skeleton. For each m-face F ∈ Lm, P̃xF corresponds by Theorem 4.65 to a
BV -function θF so that

M(P̃xF ) =

∫

F
|θF |dHm, M

(
(∂P̃ )xF

)
=

∫

F
|DθF |dHm.

Letting then

mF =
1

Hm(F )

∫

F
θF dHm,

we define
P =

∑

F∈Lm

mF [F ]

and
S = S1 + (P̃ − P ).

In the proof of the mass estimates, for instance, slicing is used.
Next we give some applications of the deformation theorem.

Theorem 4.99 (Isoperimetric inequality). If T ∈ Rm(R
n) with supp(T ) compact and ∂T = 0,

there exists R ∈ Rm+1(R
n), with supp(R) compact, ∂R = T and

M(R)m/(m+1) ≤ Cn,mM(T ).

Proof. We may assume T 6= 0. Choose ε > 0 so that εm = 2cM(T ), where c = c(n, n) is the
constant in the deformation theorem. By the deformation theorem, there are P,R, and S such that

T = P + ∂R+ S,

where R ∈ Rm+1(R
n), with compact support,

P =
∑

π∈Lε,m

απ[π], απ ∈ Z,

M(P ) ≤ cM(T ),

M(S) ≤ cεM(∂T ),

and

M(R) ≤ cεM(T ) = c(2c)1/mM(T )(m+1)/m.

Since ∂T = 0, we obtain from above that S = 0. On the other hand,

M(P ) =
∑

π∈Lε,m

|απ|Hm(π) = εm
∑

π

|απ| = 2cM(T )
∑

π

|απ|
︸︷︷︸

∈N

≤ cM(T ),

so απ = 0 for all π, and therefore P = 0. Finally, since P = S = 0, we have ∂R = T .
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To state the other application, we first give a definition.

Definition 4.100. The flat distance between m-currents T1, T2 ∈ Dm(R
n) is

F (T1, T2) = inf{M(S) +M(R) : T1 − T2 = ∂R+ S, R ∈ Dm+1(R
n), S ∈ Dm(R

n)}.

Remark 4.101. F (·, ·) is a metric in {T ∈ Dm(R
n) : M(T ) <∞} and a convergence with respect

to F is stronger than the weak convergence (i.e. convergence as currents):

F (Ti, T ) → 0 ⇒ Ti → T,

but weaker than the mass convergence:

M(Ti − T ) → 0 ⇒ F (Ti, T ) → 0.

Theorem 4.102 (Polyhedral approximation theorem). If T ∈ Dm(R
n) with M(T )+M(∂T ) <∞,

there exists a sequence Pk of the form

Pk =
∑

π∈Lεk
,m

απ[π], απ ∈ R,

such that F (T, Pk) → 0 as k → ∞. If T ∈ Rm(R
n), we may choose απ ∈ Z, so that Pk ∈ Pm(Rn).

Proof. Applying the deformation theorem with εk ց 0, we get

T − Pk = ∂Rk + Sk,

where

M(Rk) ≤ cεkM(T ) → 0

and

M(Sk) ≤ cεkM(∂T ) → 0,

and therefore
F (T, Pk) ≤ cεk

(
M(T ) +M(∂T )

)
→ 0

as k → ∞.

4.103 Rectifiability and compactness theorems

We say that a subset D ⊂ X of a metric space X is ε-dense, ε > 0, if

X =
⋃

x∈D

B(x, ε).

Furthermore, X is totally bounded if, for every ε > 0 there exists a finite ε-dense set D ⊂ X.
Finally, recall that a metric space is compact if and only if it is complete and totally bounded.

We define the flat norm F (T ) = F (T, 0) for T ∈ Dm(R
n), that is

F (T ) = inf{M(S) +M(R) : T = ∂R+ S, R ∈ Dm+1(R
n), S ∈ Dm(R

n)}.

Thus
F (Ti) → 0 ⇒ Ti → 0.

The following converse holds for (integer multiplicity) rectifiable currents.
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Theorem 4.104. Suppose that T0, Tj ∈ Rm(R
n), with suppTj ⊂ K ⊂ Rn and K compact, and

that
sup
j
{M(Tj) +M(∂Tj)} <∞.

Then
Tj → T0 ⇐⇒ F (Tj − T0) → 0.

Before the proof we first established the totally boundedness property: For every ε > 0 and
M > 0 there exists N = N(n,m, ε,M,K) ∈ N such that

(4.105) {T ∈ Rm(R
n) : supp(T ) ⊂ K, M(T ) +M(∂T ) < M} ⊂

N⋃

j=1

BF (Rj , ε)

for some R1, . . . , RN ∈ Rm(R
n), where

BF (R, ε) = {T ∈ Rm(R
n) : F (T −R) ≤ ε}.

Let δ > 0 to be fixed later. By the deformation theorem there are P, S ∈ Rm(R
n), R ∈ Rm+1(R

n)
such that

T − P = ∂R+ S,

where

(4.106) P =
∑

π∈Lδ,m

απ[π], απ ∈ Z,

(4.107) M(P ) =
∑

π

|απ|δm ≤ cM(T ) ≤ cM,

(4.108) supp(P ) ⊂ {x : dist(x,K) < 2δ
√
n},

(4.109) M(R) ≤ cδM, M(S) ≤ cδM.

Then
F (T − P ) ≤ M(S) +M(R) ≤ 2cδM < ε

by choosing δ < ε/(2cM). On the other hand, there can be only finitely many, say at most N ,
currents P satisfying (4.106)-(4.108), where N depends only on K and δ = δ(n,m, ε,M). This
proves the local boundedness property (4.105).

Proof of Theorem 4.104. We need to prove the implication Tj → T ⇒ F (Tj − T ) → 0. First
we claim that the total boundedness property (4.105) implies that there is a subsequence Tij F -
converging to T ′

0 ∈ Rm(R
n), i.e. F (Tij − T ′

0) → 0. Since {Tj} belongs to a union of finitely many
F -balls of radius 1, there exists R ∈ Rm(R

n) such that BF (R, 1) contains infinitely many Tj ’s,
call them T1,j . Similarly, there exists another R ∈ Rm(R

n) such that BF (R, 1) contains infinitely
many T1,j ’s, call them T2,j , and so on. Then the diagonal sequence (Tj,j) is a Cauchy sequence
with respect to the F -norm. Passing to a subsequence, still denoted by (Tj,j), we may assume that

∞∑

j=2

F (Tj,j − Tj−1,j−1) <∞,
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where

Tj,j − Tj−1,j−1 = ∂Rj + Sj, Rj ∈ Rm+1(R
n), Sj ∈ Rm(R

n),

with
∞∑

j=2

[
M(Rj) +M(Sj)

]
<∞.

By Lemma 4.80
∞∑

j=2

Rj ∈ Rm+1(R
n),

∞∑

j=2

Sj ∈ Rm(R
n)

as limits of Cauchy sequences in the mass norm. Then for

T ′
0 := T1,1 +

∞∑

j=2

Sj + ∂
∞∑

j=2

Rj,

it holds that

F (T ′
0 − Tj,j) ≤

∞∑

i=j+1

[
M(Rj) +M(Sj)

]
→ 0

as j → ∞. Hence Tj → T ′
0, and so T ′

0 = T0 and F (Tj,j − T0) → 0. Supposing that there exists
a subsequence (Tji) such that lim inf F (Tji − T0) > 0, we get a contradiction by repeating the
argument above. Hence F (Tj − T0) → 0.

Next we prove a rectifiability result whose proof uses the Besicovitch-Federer structure theorem
(Theorem 2.55) on the characterization of purely m-unrectifiable set in terms of projections onto
m-dimensional subspaces of Rn. First we state the following consequence of Theorem 2.55, the
proof is left as an exercise.

Lemma 4.110. Let E ⊂ Rn be Hm-measurable, with Hm(E) < ∞. Suppose that E is purely m-
unrectifiable. Then we can choose the coordinate axis such that Hm(PIE) = 0 for all I ∈ ∧(n,m).

From Theorem 4.68 we then obtain the following:

Theorem 4.111. Let E be as above and let T ∈ Dm(R
n), with suppT compact and M(T ) +

M(∂T ) <∞. Then µT (E) = 0.

Theorem 4.112 (Rectifiability theorem). Let T ∈ Dm(R
n), with suppT compact and M(T ) +

M(∂T ) <∞. If

Θ∗m(µT , x) = lim sup
rց0

µT
(
B̄(x, r)

)

ωmrm
> 0

for µT -a.e. x ∈ Rn, then there exist a countably m-rectifiable Borel set E and a Borel function
θ : Rn → [0,+∞] such that θ = 0 on Rn \ E,

T (ω) =

∫

E

〈
ω, ~T

〉
θ dHm

for ω ∈ Dm(Rn) and, for Hm-a.e. x ∈ E, ~T (x) is a unit m-vector associated with the approximate
(µT ,m)-tangent space Vx ∈ G(n,m) of E at x.
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Proof. It follows from Theorem 4.29 that there exists a Radon measure µT on Rn and a µT -
measurable mapping ~T : Rn → ∧

m(R
n) such that |~T (x)| = 1 for µT -a.e. x ∈ Rn and

T (ω) =

∫

〈~T (x), ω(x)〉dµT (x) ∀ω ∈ Dm(Rn).

Then main steps of the proof then are to establish that

(1) the set {x ∈ Rn : Θ∗m(µT , x) > 0} is countably m-rectifiable,

(2) µT ≪ Hm
xE, and that

(3) ~T : E → ∧

m(R
n) is a Borel orientation, i.e. ~T (x) = τ1 ∧ · · · ∧ τm for Hm-a.e. x ∈ E, where

τ1, . . . , τm is an orthonormal basis of the approximate (µT ,m)-tangent space of E at x.

Using the Besicovitch covering theorem we can compare an arbitrary Radon measure µ and Hm

(see e.g. [Si, p. 26], [Ma, 2.13], [Ho, 5.23]). Indeed, for all A ⊂ Rn and λ > 0

(4.113) Hm
(
{x ∈ A : Θ∗m(µ, x) > λ}

)
≤ λ−1µ(A) ≤ λ−1µ(Rn)

and

(4.114) µ
(
{x ∈ A : Θ∗m(µ, x) < λ}

)
≤ λHm(A).

From (4.113) and the assumption M(T ) +M(∂T ) <∞ we then obtain

(4.115) Hm
(
{x ∈ Rn : Θ∗m(µT , x) = ∞}

)
= 0 = Hm

(
{x ∈ Rn : Θ∗m(µ∂T , x) = ∞}.

This together with Theorem 4.68 then implies that

(4.116) µT
(
{x ∈ Rn : Θ∗m(µT , x) = ∞}

)
= 0 = µ∂T

(
{x ∈ Rn : Θ∗m(µ∂T , x) = ∞}.

Notice that since projections PI are 1-Lipschitz, Hm(PIA) = 0 if Hm(A) = 0. Define

E = {x ∈ Rn : Θ∗m(µT , x) > 0}.

By (4.113), E has a σ-finite Hm-measure. To prove that E is countably m-rectifiable, let P ⊂ E
be purely m-unrectifiable. By Lemma 4.110 and Theorem 4.111, we get µT (P ) = 0, and hence
Hm(P ) = 0 by (4.113). So, E is countably m-rectifiable. By the definition of E, µT (R

n \ E) = 0,
hence T = TxE, that is

T (ω) =

∫

E
〈ω, ~T 〉dµT , ∀ω ∈ Dm(Rn).

By (4.114) and (4.116), we then conclude that µT ≪ Hm
xE, and therefore there exists, by the

Radon-Nikodym theorem, a Borel function θ : E → [0,+∞] such that

µT (A) =

∫

A
θdHm

for every Borel set A ⊂ Rn. Hence

T (ω) =

∫

E
〈ω, ~T 〉θdHm, ∀ω ∈ Dm(Rn).
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It remains to show that ~T is associated with the approximate (µT ,m)-tangent space Vx of E at
Hm-a.e. x ∈ E. The approximate (µT ,m)-tangent space at x is the m-dimensional subspace
Vx ∈ G(n,m) such that for every δ > 0

lim
rց0

r−mµT
(
E ∩ B̄(x, r) \ {y : dist(y − x, Vx) < δ|y − x|} = 0.

We write E as a disjoint union

E = E0 ⊔
∞⊔

j=1

Ej ,

where Hm(E0) = 0 and Ej ⊂ Mj, Mj being an m-dimensional C1-smooth submanifold of Rn.
Then, in fact, Vx = Tmx E = TxMj for Hm-a.e. x ∈ E ∩Mj . For a ∈ Rn and λ > 0 we define (as in
Remark 2.51 (c)) ηa,λ : R

n → Rn,

ηa,λ(y) =
y − a

λ
.

Then for Hm-a.e. x ∈ E, we have

λ−mηx,λ♯(Hm
xE)⇀ Hm

xVx

as λց 0. This follows from the area formula since

λ−mηx,λ♯(Hm
xE)(A) := λ−m(Hm

xE)
(
η−1
x,λA

)
= λ−mHm

(
E ∩ η−1

x,λA
)

=

∫

E∩η−1
x,λA

JEηx,λ(y)dH
m(y) = Hm

(
ηx,λE ∩A

)

= (Hm
xηx,λ)(A).

More generally, for Hm-a.e. x ∈ E and for every Borel function ψ : E → [0,+∞], with

∫

E
ψdHm <∞,

we get

λ−mηx,λ♯(Hm
xψ)⇀ ψ(x)Hm

xVx,

that is,

(4.117) λ−m
∫

E
ϕ
(
ηx,λ(y)

)
ψ(y)dHm(y) → ψ(x)

∫

Vx

ϕdHm

for every ϕ ∈ C0(R
n). We apply (4.117) with ψ(y) = 〈dxI , ~T (y)〉θ(y) to obtain

λ−m
∫

E
ωI
(
ηx,λ(y)

)〈
dxI , ~T (y)

〉
θ(y)dHm(y) → θ(x)

〈
dxI , ~T (x)

〉
∫

Vx

ωI(y)dHm(y)

= θ(x)

∫

Vx

〈
ωI(y)dx

I , ~T (x)
〉
dHm(y)

for Hm-a.e. x ∈ E and for all component functions ωI of

ω =
∑

I∈
∧

(n,m)

ωIdx
I ∈ Dm(Rn).
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Next we observe that λ−m is the Jacobian determinant of the mapping ηx,λ|Mj : Mj → ηx,λMj

between m-dimensional C1-smooth submanifolds. Hence

η∗x,λ
(
ω|ηx,λMj

)
(y) = λ−m(ω|Mj)

(
ηx,λ(y)

)
,

and therefore
∫

E∩Mj

〈
η∗x,λω(y),

~T (y)
〉
dHm(y) → θ(x)

∫

Vx

〈
ω(y), ~T (x)

〉
dHm(y).

We define Sx ∈ Dm(R
n) by

Sx(ω) = θ(x)

∫

Vx

〈
ω(y), ~T (x)

〉
dHm(y), ∀ω ∈ Dm(Rn),

and claim that ∂Sx = 0. For that purpose let ω ∈ Dm−1(Rn) and R > 0 such that suppω ⊂
Bn(0, R). Then supp η∗x,λω ⊂ Bn(x, λR), and therefore

∣
∣∂ηx,λ♯T (ω)

∣
∣ =

∣
∣ηx,λ♯∂T (ω)

∣
∣ =

∣
∣
∣
∣

∫ 〈

ω ◦ ηx,λ,
∧

mdηx,λ
→
∂T

〉

dµ∂T

∣
∣
∣
∣

≤ λ1−m‖ω‖∞µ∂T
(
B(x, λR)

)
→ 0

as λ→ 0 if Θ∗m(µ∂T , x) <∞ which happens for Hm-a.e. x ∈ E by (4.115). We have proven that

ηx,λ♯T → Sx and ∂ηx,λ♯T → 0

as λ → 0, and therefore ∂Sx = 0. Finally, to show that ~T (x) orients Vx, we may assume without
loss of generality that Vx = Rm×{0}. For j ∈ {m+1, . . . , n} and I = (i1, . . . , im−1) ∈

∧
(n,m−1),

let

ω(y) = yjϕ(y)dyI = yjϕ(y)dyi1 ∧ · · · ∧ dyim−1 ,

where ϕ ∈ C∞
0 (Rn) is arbitrary. Then

dω = d
(
yjϕ(y)

)
∧ dyI = ϕ(y)dyj ∧ dyI + yjdϕ ∧ dyI

and yj ≡ 0 in Vx = Rm × {0}, and hence

0 = ∂Sx(ω) = Sx(dω) = θ(x)

∫

Vx

ϕ(y)
〈
~T (x), dyj ∧ dyI

〉
dHm(y)

= θ(x)

∫

Vx

ϕ(y)
〈
~T (x), ej ∧ e1i ∧ · · · ∧ eim−1

〉
dHm(y).

Since ϕ ∈ C∞
0 (Rn) is arbitrary, we conclude that

〈~T (x), ej ∧ eI〉 = 0

for every j ∈ {m+ 1, . . . , n} and I = (i1, . . . , im−1) ∈
∧
(n,m− 1). As |~T (x)| = 1, this proves that

~T (x) = ±e1 ∧ · · · ∧ em.
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Remark 4.118. 1. We notice that the approximate (µT ,m)-tangent space Vx coincides with
the approximate tangent space Tmx E for Hm-a.e. x ∈ E. Hence T = τ(E, θ, ~T ).

2. The compactness assumption on suppT is not necessary. It suffices only to assume that
MW (T ) +MW (∂T ) <∞ for all W ⋐ Rn.

The next lemma is a step towards the compactness theorem.

Lemma 4.119. Suppose Tj ∈ Rm(R
n), ∂Tj ∈ Rm−1(R

n), suppTj ⊂ K, with K ⊂ Rn compact,
and that

sup
j

(
M(Tj) +M(∂Tj)

)
<∞.

If Tj → T , then T ∈ Rm(R
n).

Proof. We prove the lemma by induction on m. The case m = 0 is trivial. Suppose that the lemma
holds for rectifiable (m − 1)-currents with integer multiplicity. Let Tj ∈ Rm(R

n), Tj → T , be a
sequence satisfying the assumptions.

First we prove by using Theorem 4.112 that T is a rectifiable m-current. For that purpose we
will show that Θ(µT , x) > 0 for µT -a.e. x ∈ Rn. For every x ∈ Rn, let ρx be the 1-Lipschitz
function ρx(y) = |y − x|. By Theorem 4.88 (3),

(4.120) 〈Tj , ρx, t〉 ∈ Rm−1(R
n)

for a.e. t ∈ R. Clearly,

〈Tj , ρx, t〉 = (∂Tj)x
(
Rn \ B̄(x, t)

)
− ∂

(
Tjx(R

n \ B̄(x, t))
)

→ (∂T )x
(
Rn \ B̄(x, t)

)
− ∂

(
Tx(Rn \ B̄(x, t))

)
(4.121)

= 〈T, ρx, t〉.

Theorem 4.88 (2) and Fatou’s lemma imply that, for all δ > 0,

∫ ∞

δ
lim inf
j→∞

M(〈Tj , ρx, t〉)dt ≤ lim inf
j→∞

∫ ∞

δ
M(〈Tj , ρx, t〉)dt ≤ lim inf

j→∞
M(Tj),

and similarly,

∫ ∞

δ
lim inf
j→∞

M(∂〈Tj , ρx, t〉)dt =
∫ ∞

δ
lim inf
j→∞

M(〈∂Tj , ρx, t〉)dt

≤ lim inf
j→∞

∫ ∞

δ
M(〈∂Tj , ρx, t〉)dt

≤ lim inf
j→∞

M(∂Tj).

Hence for a.e. t ∈ R there exists a subsequence such that

(4.122) sup
ji

(
M(〈Tji , ρx, t〉) +M(∂〈Tji , ρx, t〉)

)
<∞.

The induction hypothesis together with (4.120), (4.121), and (4.122) imply that

(4.123) 〈T, ρx, t〉 ∈ Rm−1(R
n)
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for a.e. t. On the other hand, since ∂Tj → ∂T , we get from the induction hypothesis that

(4.124) (∂T )xB(x, t) ∈ Rm−1(R
n),

and since

(4.125) 〈T, ρx, t〉 = ∂
(
TxB(x, t)

)
− (∂T )xB(x, t)

for a.e. t by Theorem 4.87 (1), we obtain

(4.126) ∂
(
TxB(x, t)

)
= 〈T, ρx, t〉+ (∂T )xB(x, t) ∈ Rm−1(R

n)

for a.e. t.
Next we want to reduce the proof to the case ∂T = 0. Combining Example 4.74 (2) and (3)

we conclude that the cone over a rectifiable current with integer multiplicity is a rectifiable current
with integer multiplicity, that is

S ∈ Rd(R
n) ⇒ 0⊳ S = h♯

([
[0, 1]

]
× S

)
∈ Rd+1(R

n), h(t, x) = tx.

Hence 0 ⊳ ∂T ∈ Rm(R
n) since ∂T ∈ Rm−1(R

n) by the induction hypothesis. We also notice that
(by the homotopy formula)

∂
(
0⊳ (∂T )− T

)
= ∂(0⊳ ∂T )− ∂T = ∂T − 0⊳ ∂(∂T )− ∂T = 0.

Hence we may assume without loss of generality that ∂T = 0. Indeed, otherwise we may consider
the sequence T̃j = Tj − 0⊳ ∂Tj ∈ Rm(R

n), with properties

T̃j = Tj − 0⊳ ∂Tj → T̃ := T − 0⊳ ∂T,

∂T̃j = 0,

M(T̃j) ≤ M(Tj) +M(∂Tj).

Define, for a fixed x ∈ Rn,
f(r) = µT

(
B̄(x, r)

)
.

Using the assumption ∂T = 0 we obtain from Theorem 4.87 (3) that

(4.127) M
(
∂
(
TxB(x, r)

))
= M

(
〈T, ρx, r〉

)
≤ lim inf

hց0
h−1

(
f(r + h)− f(r)

)
= f ′(r)

for a.e. r > 0. Suppose then that Θ∗m(µT , x) < η < 1, so that

lim sup
s→0

f(s)

ωmsm
< η

and that
1

δ

∫ δ

0

d

dr

(

f1/m(r)
)

dr ≤ 1

δ
f1/m(δ) ≤ ω1/m

m η1/m

for sufficiently small δ > 0. Hence we have

d

dr

(

f1/m(r)
)

= 1
mf

1
m
−1(r)f ′(r) ≤ 2ω1/m

m η1/m,

or equivalently

(4.128) f ′(r) ≤ 2mω1/m
m η1/mf

m−1
m (r)
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for all r in a subset of [0, δ] of positive m1-measure. Suppose from now on that m > 1 (see
Remark 4.134 for the case n = 1). By the isoperimetric inequality (Theorem 4.99) applied to
∂
(
TxB(x, r)

)
∈ Rm−1(R

n), there exists Sr ∈ Rm(R
n) with the properties

∂Sr = ∂
(
TxB(x, r)

)

and
M(Sr)

m−1
m ≤ CM

(
∂(TxB(x, r)

)
≤ cη1/mM

(
TxB̄(x, r)

)m−1
m ,

where also (4.127) and(4.128) were used. Thus there exists a sequence ri ց 0 such that

∂Sri = ∂
(
TxB̄(x, ri)

)
∈ Rm−1(R

n)

and
M(Sri) ≤ cη

1
m−1M

(
TxB̄(x, ri)

)
.

Let then C ⊂ {x : Θ∗m(µT , x) < η} be compact. By Vitali’s covering theorem for the Radon
measure µT , we find, for all ̺ > 0, disjoint balls B̺

j = B̄(xj , rj) such that xj ∈ C, rj < ̺,

µT
(
C \

⋃

j

B̺
j

)
= 0,(4.129)

B̺
j ⊂ {x : dist(x,C) < ̺},(4.130)

M(S̺j ) ≤ cη
1

m−1M
(
TxB̺

j

)
(4.131)

for some S̺j ∈ Rm(R
n) with

∂S̺j = ∂
(
TxB̺

j

)
.

By the homotopy formula, with h(t, x) = tx+ (1− t)xj, we then have

S̺j − TxB̺
j = ∂

(
xj ⊳ (S̺j − TxB̺

j )
)

and hence by (4.46) and (4.131)
∣
∣
(
S̺j − TxB̺

j

)
(ω)
∣
∣ =

∣
∣
(
xj ⊳ (S̺j − TxB̺

j )
)
(dω)

∣
∣

(4.46)

≤ ̺M
(
S̺j − TxB̺

j

)
‖dω‖∞

≤ c̺(η
1

m−1 + 1)M(TxB̺
j )‖dω‖∞.

Since the balls B̺
j are disjoint and M(T ) <∞, we get

(4.132)
∑

j

(
S̺j − TxB̺

j

)
→ 0 as ̺→ 0,

and so
TxC = lim

̺→0

∑

j

TxB̺
j = lim

̺→0

∑

j

S̺j

by (4.129), (4.130), and (4.132). It then follows that

µT (C) = M(TxC) ≤ lim inf
̺→0

M
(∑

j

S̺j
)
≤ lim inf

̺→0

∑

j

M(S̺j )

≤ lim inf
̺→0

cη
1

m−1

∑

j

M
(
TxB̺

j

)
≤ lim inf

̺→0
cη

1
m−1

∑

j

µT (B
̺
j )

= lim inf
̺→0

cη
1

m−1µT
(⋃

j

B̺
j

)

= cη
1

m−1µT (C).
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If cη
1

m−1 < 1, we obtain µT (C) = 0. Hence

Θ∗m(µT , x) > 0

for µT -a.e. x ∈ Rn. By Theorem 4.112, T = τ(E, θ, ~T ), where E ⊂ Rn is a countably m-rectifiable
Borel set and θ : E → [0,∞] is a Borel function such that

T (ω) =

∫

E
〈ω, ~T 〉θ dHm, ∀ω ∈ Dm(Rn).

It remains to show that θ is integer valued. Then Hm(E) <∞ since

M(T ) =

∫

E
θ dHm <∞.

As in the proof of Theorem 4.112, we have

ηx,r♯T → θ(x)[Vx] as r → 0

for Hm-a.e. x ∈ E, where ηx,r(y) = (y − x)/r and Vx = Tmx E is the approximate (µT ,m)-tangent
space of E at x. Fixing such x, we may assume that

Vx = Rm × {0} = Rm.

Let P : Rn → Rm be the projection P (x, y) = x. Since

P♯
(
∂(ηx,r♯Tj)

)
= P♯

(
ηx,r♯(∂Tj)

)
∈ Rm−1(R

n)

by the assumption ∂Tj ∈ Rm−1(R
n) and Example 4.74 (3), and since

P♯
(
∂(ηx,r♯Tj)

)
→ P♯

(
∂(ηx,r♯T )

)
,

we have
∂P♯
(
ηx,r♯T

)
= P♯

(
∂(ηx,r♯T )

)
∈ Rm−1(R

n)

by the induction hypothesis. We conclude (see Lemma 4.133 below) that

P♯
(
ηx,r♯T

)
∈ Rm(R

m).

By Theorem 4.65 there exist integer valued functions gr ∈ BV (Rm) such that

P♯
(
ηx,r♯T

)
(ω) =

∫

Rm

ϕgr dHm =

∫

Rm

〈ω, e1 ∧ · · · ∧ em〉gr dHm

for ω = ϕdx1 ∧ · · · ∧ dxm ∈ Dm(Rm). But

P ∗(ω) = (ϕ ◦ P )dx1 ∧ · · · ∧ dxm ∈ Dm(Rn),

and so ∫

Rm

ϕgr dHm = ηx,r♯T (P
∗ω) → θ(x)[Rm](P ∗ω) = θ(x)

∫

Rm

ϕdHm

as r → 0. Since all gr’s are integer valued, we conclude that θ(x) ∈ Z which proves the lemma.

Lemma 4.133. If S ∈ Dm(R
m), suppS is compact, and ∂S ∈ Rm−1(R

m), then S ∈ Rm(R
m).
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Proof. Since 0⊳ S ∈ Dm+1(R
m) = {0}, we have

s = 0⊳ ∂S + ∂(0 ⊳ S) = 0⊳ ∂S = h♯
([
[0, 1]

]
× ∂S

)
∈ Rm(R

m)

by Example 4.74 (2), (3).

Remark 4.134. In the case m = 1 (in Lemma 4.119), we have

∂
(
TxB(x, t)

)
∈ R0(R

n)

for a.e. t by (4.126). Assuming ∂
(
TxB(x, t)

)
6= 0, we get a contradiction

1 ≤ M
(
∂
(
TxB(x, r)

))
≤ f ′(r) ≤ 4η < 1

by (4.127) and (4.128), with η < 1/4. Hence ∂
(
TxB(x, t)

)
= 0 for a.e. r and we may take Sr = 0

(and thus S̺j = 0 in (4.131)). It follows that µT (C) = 0.

Theorem 4.135 (Boundary rectifiability theorem). Let T ∈ Rm(R
n) with suppT compact and

M(∂T ) <∞. Then ∂T ∈ Rm−1(R
n).

Proof. By the polyhedral approximation theorem 4.102, there exists a sequence Pk ∈ Pm(Rn) of
the form

Pk =
∑

π∈Lεk
,m

απ[π], απ ∈ Z,

such that Pk → T and ∂Pk → ∂T as k → ∞. Since ∂Pk ∈ Rm−1(R
n), and ∂(∂Pk) = 0, we conclude

from Lemma 4.119 that

∂T = lim
k
∂Pk ∈ Rm−1(R

n).

Theorem 4.136 (Compactness theorem). Suppose that Tj ∈ Rm(R
n), with supp(Tj) ⊂ K and

K ⊂ Rn compact, and that

sup
j

{
M(Tj) +M(∂Tj)

}
<∞.

Then there exist a subsequence Tji and T ∈ Rm(R
n) such that Tji → T .

Proof. By Theorem 4.135, ∂Tj ∈ Rm−1(R
n) and the claim then follows from Lemma 4.119.

5 Mass minimizing currrents

In this final section we discuss briefly mass (area) minimizing currents that provide a tool to attack
the general Plateau problem. In particular, we prove the existence of a mass minimizing integer
multiplicity rectifiable m-current given a rectifiable (m− 1)-cycle (of integer multiplicity).

Definition 5.1. An m-current S ∈ Rm(R
n) is mass minimizing if

M(S) ≤ M(T )

for every T ∈ Rm(R
n) with ∂T = ∂S.
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Theorem 5.2 (Existence theorem). If T ∈ Rm−1(R
n) with ∂T = 0 and supp(T ) is compact, there

exists S0 ∈ Rm(R
n) such that ∂S0 = T and

M(S0) = min{M(S) : S ∈ Rm(R
n), ∂S = T}.

Hence S0 is mass minimizing.

Proof. By the isoperimetric inequality (Theorem 4.99) there is a m-current S ∈ Rm(R
n) with

supp(S) compact such that ∂S = T and

M(S)m/(m+1) ≤ Cn,mM(T ) <∞.

Hence the set S = {S ∈ Rm(R
n) : ∂S = T} is non-empty (in fact, also 0 ⊳ T would do) and we

may find a minimizing sequence Sj ∈ Rm(R
n), ∂Sj = T , such that

M(Sj) → I := inf{M(S) : S ∈ Rm(R
n), ∂S = T}.

Let R > 0 be so large that supp(T ) ⊂ B̄(0, R) and let f : Rn → B̄(0, R),

f(x) =

{

Rx/|x|, if |x| ≥ R;

x, if |x| ≤ R,

be the 1-Lipschitz retract onto B̄(0, R). Then M(f♯S) ≤ M(S) for every S ∈ Dm(R
n) by (4.45).

Hence we may assume that supp(Sj) ⊂ B̄(0, R) for every j. Moreover

sup
j

{
M(Sj) +M(∂Sj)

}
= sup

j

{
M(Sj) +M(T )

}
<∞.

By the compactness theorem (Theorem 4.136) there exists a subsequence Sji and S0 ∈ Rm(R
n)

such that Sji → S0. Then T = ∂Sji → ∂S0, and therefore ∂S0 = T and

I ≤ M(S0) ≤ lim inf
ji→∞

M(Sji) = I.
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6 Appendix

6.1 Proof of Riesz’ representation theorem 1.62

First we prove the auxiliary lemma (Lemma 1.63).

Proof of Lemma 1.63. (a) Write δ = dist(K,∂V ). Because K is compact, it follows that δ > 0.
Then the function

f(x) = max
(
0, 1− 2

δ
dist(x,K)

)

satisfies the conditions of part (a).

(b) For every x ∈ K there exists a ball B(x, rx), with B(x, 2rx) ⊂ Vj for some j. Because K is
compact, it can be covered by finitely many such balls, i.e.

K ⊂
k⋃

i=1

B(xi, rxi).

Let Aj be the union of those closed balls B̄(xi, rxi) for which B(xi, 2rxi) ⊂ Vj . Then

Aj ⊂ Vj and K ⊂
m⋃

j=1

Aj .

By part (a) we choose functions gj ∈ C0(R
n) s.t.

χAj
≤ gj ≤ 1 and supp(gj) ⊂ Vj.

Then define

h1 = g1,

h2 = (1− g1)g2,

...

hm = (1− g1) · · · (1− gm−1)gm.

Then clearly

0 ≤ hj ≤ 1 and supp(hj) ⊂ Vj .

Induction with respect to m shows that
∑m

j=1 hj = 1− (1− g1) · · · (1− gm). Furthermore,

χK ≤
m∑

j=1

hj ≤ 1,

because if x ∈ K, then x ∈ Aj for some j and consequently 1−gj(x) = 0 and
∑m

j=1 hj(x) = 1.

Remark 6.2. In the case of a locally compact Hausdorff space Lemma 1.63 is (a version of)
Urysohn’s lemma.
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Proof of Riesz’ representation theorem 1.62. Define

µ̃(∅) = 0

and set
µ̃(V ) = sup{Λ(f) : f ∈ C0(R

n), 0 ≤ f ≤ 1 and supp(f) ⊂ V }
for every open set V ⊂ Rn. Then it follows from the definition that

(6.3) 0 ≤ µ̃(V1) ≤ µ̃(V2),

if V1, V2 ⊂ Rn are open and V1 ⊂ V2.
Next define

(6.4) µ̃(A) = inf{µ̃(V ) : A ⊂ V ⊂ Rn, V open}

for all A ⊂ Rn. We show that µ̃ is a metric outer measure. Then all Borel-sets of Rn will be
µ̃-measurable by Theorem 1.18.

1. Monotonicity
µ̃(A1) ≤ µ̃(A2), if A1 ⊂ A2,

follows directly from (6.3) and the definition (6.4).

2. We prove first subadditivity for open sets. In other words, if Vj ⊂ Rn, j ∈ N, are open, then

(6.5) µ̃
(

∞⋃

j=1

Vj
)
≤

∞∑

j=1

µ̃(Vj).

To prove this let f ∈ C0(R
n) s.t. 0 ≤ f ≤ 1 and supp(f) ⊂ ⋃∞

j=1 Vj. Because of the
compactness of supp(f)

supp(f) ⊂
m⋃

j=1

Vj.

Write K = supp(f). Lemma 1.63, part (b), implies that there exist functions hj ∈ C0(R
n)

with

0 ≤ hj ≤ 1, supp(hj) ⊂ Vj and χK ≤
m∑

j=1

hj ≤ 1.

Then

f =

m∑

j=1

hjf,

supp(hjf) ⊂ Vj and 0 ≤ hjf ≤ 1 ∀ j = 1, . . . ,m,

and hence

Λ(f) =

m∑

j=1

Λ(hjf) ≤
m∑

j=1

µ̃(Vj) ≤
∞∑

j=1

µ̃(Vj).

Taking sup over all “admissible” functions f in the definition of µ̃
(
∪jVj

)
we obtain (6.5). Let

then Aj ⊂ Rn, j ∈ N, be arbitrary sets. Fix ε > 0 and choose open sets Vj ⊂ Rn s.t. Aj ⊂ Vj
and

µ̃(Vj) ≤ µ̃(Aj) + ε/2j .
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Then
∞⋃

j=1

Aj ⊂
∞⋃

j=1

Vj,

and hence by monotonicity and (6.5) we obtain

µ̃
(

∞⋃

j=1

Aj
)
≤ µ̃

(
∞⋃

j=1

Vj
)
≤

∞∑

j=1

µ̃(Vj) ≤
∞∑

j=1

µ̃(Aj) + ε,

which implies subadditivity for all sets by letting ε → 0. We have proved that µ̃ is an outer
measure.

3. Let V1, V2 ⊂ Rn be open sets and dist(V1, V2) > 0. Let further fj ∈ C0(R
n) s.t. 0 ≤ fj ≤ 1

and supp(fj) ⊂ Vj , j = 1, 2. Then 0 ≤ f1 + f2 ≤ 1 and supp(f1 + f2) ⊂ V1 ∪ V2, and hence

Λ(f1) + Λ(f2) = Λ(f1 + f2) ≤ µ̃(V1 ∪ V2).
Taking sup over all admissible functions f1 and f2 we obtain

(6.6) µ̃(V1) + µ̃(V2) ≤ µ̃(V1 ∪ V2)
(6.5)

≤ µ̃(V1) + µ̃(V2).

Let then A1, A2 ⊂ Rn be arbitrary sets with dist(A1, A2) > 0. Fix ε > 0 and choose an open
set V ⊂ Rn s.t. A1 ∪A2 ⊂ V and

µ̃(V ) ≤ µ̃(A1 ∪A2) + ε.

Choose then open sets Vj ⊂ Rn, j = 1, 2, s.t. Aj ⊂ Vj and dist(V1, V2) > 0. (We may choose
for instance Vj = {x ∈ Rn : dist(x,Aj) <

1
3 dist(A1, A2)}.) Now Aj ⊂ Vj ∩ V and

dist(V1 ∩ V, V2 ∩ V ) > 0,

and hence by (6.6)

µ̃(A1) + µ̃(A2) ≤ µ̃(V1 ∩ V ) + µ̃(V2 ∩ V )

= µ̃(V ∩ (V1 ∪ V2))
≤ µ̃(V )

≤ µ̃(A1 ∪A2) + ε.

Letting now ε→ 0 we see that µ̃ is a metric outer measure.

4. We prove next that µ̃ is locally finite: If B(x, r) ⊂ Rn, then choose f0 ∈ C0(R
n) s.t. 0 ≤ f0 ≤ 1

and
χB(x,r) ≤ f0.

Then f ≤ f0 for all functions f admissible in the definition of µ̃
(
B(x, r)

)
. Because Λ(f0−f) ≥

0, then
Λ(f) ≤ Λ(f0).

Taking sup over all such functions f we obtain

µ̃
(
B(x, r)

)
= sup

f
Λ(f) ≤ Λ(f0) <∞.

Corollary 1.32 implies that
µ = µ̃|Bor(Rn)

is a Radon measure.
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5. We must still show that

Λ(f) =

∫

Rn

f dµ

for all f ∈ C0(R
n).

Let f ∈ C0(R
n). We may suppose that f ≥ 0, because f = f+ − f−, where f+ = max(0, f) ∈

C0(R
n) and f− = max(0,−f) ∈ C0(R

n). Fix ε > 0 and set for all k ∈ N

fk(x) = max
(
(k − 1)ε,min(f(x), kε)

)
− (k − 1)ε.

kε
(k − 1)ε

f

fk

Clearly 0 ≤ fk ≤ ε and fk ∈ C0(R
n) for all k. Because fk ≡ 0, if (k − 1)ε ≥ ‖f‖∞, then

f =
m∑

k=1

fk

for some m ∈ N. Let K(k) = {x ∈ Rn : f(x) ≥ kε}, k ∈ N and K(0) = supp(f). Then

(6.7) εχK(k) ≤ fk ≤ εχK(k−1),

and hence

(6.8) ε
m∑

k=1

µ
(
K(k)

)
≤

m∑

k=1

∫

Rn

fk dµ =

∫

Rn

f dµ ≤ ε
m∑

k=1

µ
(
K(k − 1)

)
.

On the other hand, if δ > 0, then by (6.7)

1

ε
(1 + δ)fk ≥ 1

in some neighbourhood W of K(k). In particular,

1

ε
(1 + δ)fk ≥ g

for every function g ∈ C0(R
n) admissible in the definition of µ(W ). Thus

Λ
(
(1 + δ)fk

)
≥ εµ(W ) ≥ εµ

(
K(k)

)
,

and further
Λ(fk) ≥ εµ

(
K(k)

)

letting δ → 0. In the same way, fk/ε is admissible in the definition of µ(V ) for every
neighbourhood V of K(k − 1), and hence Λ(fk) ≤ εµ(V ). Then by the definition

Λ(fk) ≤ εµ
(
K(k − 1)

)
.
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Combining these inequalities we obtain

(6.9)

m∑

k=1

εµ
(
K(k)

)
≤ Λ(f) ≤ ε

m∑

k=1

µ
(
K(k − 1)

)
.

The inequalities (6.8) and (6.9) imply that

∣
∣Λ(f)−

∫

Rn

f dµ
∣
∣ ≤ ε

m∑

k=1

(
µ
(
K(k − 1)

)
− µ

(
K(k)

))

= ε
(
µ
(
K(0)

)
− µ

(
K(m)

))

≤ ε µ
(
supp(f)

)

︸ ︷︷ ︸

<∞

.

Letting ε→ 0 we see that

Λ(f) =

∫

Rn

f dµ

and thus µ is the desired Radon measure.

6. Finally, we prove the uniqueness of µ. Let µ1 also be a Radon-measure, for which

Λ(f) =

∫

Rn

f dµ1

for all f ∈ C0(R
n). Let V ⊂ Rn be open and bounded. By Lemma 1.63 there exists a

sequence fj ∈ C0(R
n) s.t.

0 ≤ f1(x) ≤ f2(x) ≤ · · · ≤ fj(x) → χV (x)

for all x ∈ Rn. By the Monotone Convergence Theorem

µ1(V ) = lim
j→∞

∫

fj dµ1

= lim
j→∞

Λ(fj)

= lim
j→∞

∫

fj dµ

= µ(V ).

Because Bor(Rn) is a σ-algebra spanned by open and bounded sets, then µ1 = µ (in Bor(Rn)).

6.10 Proof of Theorem 1.67

Proof. (a) Let K ⊂ Rn be compact and V ⊂ Rn be open s.t. K ⊂ V . Choose by part (a) of
Lemma 1.63 a function f ∈ C0(R

n) with χK ≤ f ≤ 1 and supp(f) ⊂ V . Then

µ(V ) ≥
∫

Rn

f dµ

= lim
k→∞

∫

Rn

f dµk

≥ lim sup
k→∞

µk(K).

Because this holds for all open V ⊃ K, the claim in part (a) is proven.
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(b) If V ⊂ Rn is open, then let K ⊂ V compact. In the same way as above we obtain

µ(K) ≤ lim inf
k→∞

µk(V ).

Because µ is a Radon measure,

µ(V ) = sup{µ(K) : K ⊂ V compact},

and part (b) is proven.

6.11 Proof of Theorem 1.69

For the proof we need the following auxiliary result.

Lemma 6.12. The norm space
(
C0(R

n), ‖·‖
)
, where ‖f‖ = sup{|f(x)| : x ∈ Rn}, is separable, i.e.

there is a countable dense set F = {fj}∞j=1 ⊂ C0(R
n). In other words, if f ∈ C0(R

n) and ε > 0,
then ‖f − fj‖ < ε for some fj ∈ F .

Proof. (Exerc.)

Proof of Theorem 1.69. Suppose first that

(6.13) sup
k
µk(R

n) = A <∞.

Let {fj}∞j=1 be a dense set in C0(R
n). It follows from the assumption (6.13) that

{
∫

Rn

f1 dµk : k ∈ N
}

is a bounded subset of R, and hence there is a subsequence (µ1k) of (µk) s.t.

∫

Rn

f1 dµ
1
k
k→∞−−−→ a1

for some a1 ∈ R. Choose inductively for all j ≥ 2 a subsequence {µjk} of the sequence {µj−1
k } s.t.

∫

Rn

fj dµ
j
k
k→∞−−−→ aj

for some aj ∈ R. Then the diagonal sequence {µkk}∞k=1 satisfies

(6.14) lim
k→∞

∫

Rn

fj dµ
k
k = aj

for all j ≥ 1. Let L be the vector space spanned by the functions fj,

L =
{
g =

m∑

j=1

λjfj : λj ∈ R, m ∈ N
}
.

Set
Λ(g) =

∑

j

λjaj ,
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when

g =
∑

j

λjfj.

Then by (6.14) we see that

Λ(g) = lim
k→∞

∫

Rn

g dµkk

for all g ∈ L. In particular, Λ is well defined (i.e. Λ(g) is independent of the particular choice of
the linear combination for g), positive and linear functional in L. Moreover, it follows from (6.13)
that

(6.15) |Λ(g)| ≤ A ‖g‖

for all g ∈ L. If f ∈ C0(R
n) is arbitrary, then choose a sequence (hj), hj ∈ L, s.t.

‖f − hj‖ j→∞−−−→ 0,

and set

Λ(f) = lim
j→∞

Λ(hj).

Then it follows from (6.15) that Λ is well defined in C0(R
n) (Λ(f) independent of the choice of the

sequence (hj)) and (6.15) holds for all g ∈ C0(R
n). Furthermore, Λ is a positive linear functional

in C0(R
n). In fact, if f ≥ 0 and ‖f − hj‖ → 0, then lim infj→∞(minhj) ≥ 0, and hence

Λ(f) = lim
j→∞

lim
k→∞

∫

Rn

hj dµ
k
k ≥ 0,

because
∫
hj dµ

k
k ≥ Amin(0,min hj). By Riesz’ representation theorem there exists a Radon-

measure µ s.t.

Λ(f) =

∫

Rn

f dµ

for all f ∈ C0(R
n). We prove next that µkk ⇀ µ. Let ε > 0. For f ∈ C0(R

n), we choose g ∈ L such
that ‖f − g‖ ≤ ε

2A . Then for large values of k

∣
∣Λ(f)−

∫

Rn

f dµkk
∣
∣ ≤ |Λ(f − g)|+

∣
∣Λ(g) −

∫

Rn

g dµkk
∣
∣

︸ ︷︷ ︸

≤ε

+
∣
∣

∫

Rn

(g − f) dµkk
∣
∣

≤ A‖f − g‖ + ε+A‖f − g‖
≤ 2ε.

Therefore µkk ⇀ µ. Finally, we give up the hypothesis (6.13). From the assumption that

sup
k
µk(K) <∞

for all compact K ⊂ Rn and the above argument there follows that for every m ∈ N there exists a
subsequence (µmk ) of (µk) s.t. {µmk : k ∈ N} ⊂ {µm−1

k : k ∈ N} and

µmk xB(0,m) ⇀ νm,
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where νm is a Radon-measure with supp(νm) ⊂ B̄(0,m). Then for the diagonal sequence µkk there
holds

µkkxB(0,m)⇀ νm

for all m ∈ N. Thus νmxB(0, ℓ) = νℓ, when ℓ ≤ m. Therefore we may define a Radon-measure µ
in Rn setting

µ(E) = ν1
(
E ∩B(0, 1)

)
+
∑

m≥2

νm
(
E ∩

(
B(0,m) \B(0,m− 1)

))
, E ∈ Bor(Rn).

Because supp(f) ⊂ B(0,m0), it follows that

∫

Rn

f dµ =

∫

Rn

f dνm0 = lim
k→∞

∫

Rn

f dµkk,

and hence µkk ⇀ µ.


