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The material is collected mainly from books [EG], [Fe|, [LY], [Ma], [Mo], and [Si]
and from the lecture notes ”Currents and varifolds” (fall 2011) by P. Mattila and
”Moderni reaalianalyysi” by I. Holopainen.

The aim of the course is to give an introduction to the theory of varifolds and currents that
are kind of generalized surfaces. They have been used in many geometric variational problems, in
particular, in connections with higher dimensional minimal surfaces.

First we recall some basic notions of geometric measure theory.

1 Review of measure theory

1.1 Measures and outer measures

Let X be a set and let
P(X)={A: AcC X}

be the power set of X (also denoted by 2%).
Definition 1.2. The collection M C P(X) is a o-algebra “sigma algebra”) in X if
(1) 0 e M;
(2) Ae M = A°=X\AecM;
(B) AjeM,ieN = U2, A e M.
Example 1.3. 1. P(X) is the largest o-algebra in X;
2. {0, X} is the smallest o-algebra in X;
3. Leb(R™) is the class of Lebesgue measurable sets of R".
4. If M is a g-algebra in X and A C X, then
M|A={BNA: Be M}
is a o-algebra in A.
5. If M is a o-algebra in X and A € M, then
Myuy={BCX:BNnAec M}
is a o-algebra in X.
Definition 1.4. If 7 C P(X) is a family of subsets of X, then
o(F) = m{./\/l M is a o-algebra in X, F C M}
is the o-algebra generated by JF. It is the smallest o-algebra that contains F.
Example 1.5. Recall that the set I C R™ is an open n-interval if it is of the form
I={(z1,...,2p): aj < xj <bj},
where —oo < a; < bj < +o00. Then
o({I: I n-interval}) = o({A: A C R" open}) notat: Bor(R")

is the o-algebra of Borel sets of R™. (Can you prove the left side equality?)
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Observe that all open subsets of R", closed sets, G5 sets (countable intersections of open sets),
F, sets (countable unions of closed sets), Fys5 sets, Gs, sets (etc.) are Borel sets. Thus for example
the set of rational numbers Q is Borel.

Remark 1.6. In every topological space X one can define Borel sets as
Bor(X) =0({A: A C X open}).

Definition 1.7. Let M be a o-algebra in X. A mapping pu: M — [0,4+o0] is a measure if there
holds:

(i) u® =0,
(i) p(UZy Ai) = 202 w(4;) if the sets 4; € M are disjoint.
The triple (X, M, u) is called a measure space and the elements of M measurable sets.

The condition (ii) is called countably additivity. It follows from the definition that a measure is
monotone: If A,B € M and A C B, then p(A) < u(B).

Remark 1.8. 1. If u(X) < oo, the measure p is finite.
2. If u(X) =1, then p is a probability measure.

3. If X =J;2, Ai, where pu(A;) < oo Vi, the measure 1 is o-finite. Then we shall say that X is
o-finite with respect to p.

4. If A e M and pu(A) =0, then A is of measure zero.

5. If X is a topological space and Bor(X) C M (i.e. every Borel set is measurable), then p is a
Borel measure.

Example 1.9. 1. X = R", M = LebR" = the family of Lebesgue measurable sets and p =
m,, = the Lebesgue measure.

2. X = R", M = BorR" = the family of Borel sets and u = m,|BorR"™ = the restriction of
the Lebesgue measure to the family of Borel sets.

3. Let X # () be any set. Fix z € X and set for all A C X

1, ifx e A,
n(A) = .
0, ifx¢gA.

Then p: P(X) — [0, +00] is a measure (so called Dirac measure at x € X). We often write
= 0g.

4. If f: R™ — [0, 4o0] is Lebesgue measurable, then p: Leb(R™) — [0, +o0],

W(E) = /E f(@)dmn (),

1S a measure.
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5. If (X, M, u) is a measure space and A € M, then the mapping u A: M4 — [0, +0o0],
(neA)(B) = p(BNA),
is a measure. It is called the restriction of u to A.
Theorem 1.10. Let (X, M, u) be a measure space and Ay, Ag, ... € M.
(a) If Ay C Aa C A3 -+, then

p(lJ Ai) = lim p(4)).

1—00
i=1
(b) If Ay D Ay D A3 D -+ and u(Ag) < oo for some k, then
p(() Ai) = lim p(A4).

! 1—00
=1

Proof. Course ”"Mitta ja integraali”. O

Definition 1.11. A mapping i: P(X) — [0, +00] is an outer measure in X if the following holds:
(i) a(0) = 0;
(i) fi(A) < 330, (A i A € U2, Ai € X

Remark 1.12. 1. An outer measure is defined for all subsets of X.

2. Condition (ii) (monotone subadditivity) implies that an outer measure is monotone, i.e.
a(A) < p(B)if AC BC X.

3. In many books an outer measure is simply called a measure. (Soon we will do so, too.)
4. Let fi be an outer measure in X and A C X. Then the restriction of fi to A, defined by
(7 A)(B) = i(B N A)
is an outer measure in X.

Every outer measure defines the g-algebra of “measurable” sets in terms of the Carathéodory
condition.

Definition 1.13. Let i be an outer measure in X. A set F C X is fi-measurable, or briefly
measurable, if

A(4) = (AN E) + A\ E)
for all A C X.
Theorem 1.14. Let i be an outer measure in X and
M=M; ={FE C X: E is i-measurable}

Then

(a) M is a o-algebra and

(b) = f|M is a measure (i.e. u is countably additive).
Proof. Course ”Mitta ja integraali”. O

Definition 1.15. We say that an outer measure [i in a topological space X is a Borel outer measure
if every Borel set of X is fi-measurable (i.e. if the measure defined by [ is a Borel measure).
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1.16 Metric outer measure
We shall next study the question when an outer measure i in a topological space X is Borel.

Definition 1.17 (Carathéodory’s criterion). An outer measure /i in a metric space (X,d) is a
metric outer measure if

(AU B) = i(A) + i(B)
for all A, B C X, for which dist(A, B) = inf{d(a,b): a € A,b € B} > 0.

Theorem 1.18. An outer measure [i of a metric space (X,d) is a Borel outer measure if and only
if i is a metric outer measure.

We first formulate and prove the following lemma.
Lemma 1.19. Let ji be a metric outer measure, A C X and G an open set such that A C G. If
A ={x € A: dist(x,G°) > 1/k}, k €N,
then i(A) = limg_, o0 fi(Ag).
Proof. Since G is open, A C ;o Ak. Thus A = 32, Ak. Let
By = Apq1 \ A
Then - .
A= A U (U sz> U (U B2k+1> ;

k=n k=n

and thus - -
f(A) < fi(Azn) + D i(Bak) + Y ii(Baky1)

k=n k=n

=(1) =(I1)

Let now n — oo.
(1) If the sums (I),(IT) — 0 as n — oo, then

A(A) < lim ji(Asn) < i(A)

n—oo

and the claim is true.
(2) If (I) #~ 0 as n — oo, then
> i Bag) = oo
k
On the other hand,

n—1
AD Ay, D U Boy,
k=1
where
0.

1 1
dist(Bsy, B > —

Because [ is a metric outer measure, we have

n—1
> i(Ba) =
k=1

=

(U Bar) < filA2a) < i(A).
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Letting n — co we obtain
A(A) = lim i(4y) = oo.

The argument goes in the same way if the sum (I7) /4 0 as n — oc. O

Proof of Theorem 1.18. Suppose first that [i is a metric outer measure. We want to prove that [
is a Borel outer measure. Because Bor(X) = o({F': F C X closed}) and M is a o-algebra, it is
enough to show that every closed set F' C X is ji-measurable.

Let E C X be an arbitrary test set in the Carathéodory condition. We apply Lemma 1.19 for
the sets A=E\ Fand G=X\F. Let Ay, ={x € E\ F: dist(z,G°) > 1/k}, k € N. Then

dist(Ag, F) > 1/k
and
lim i(Ax) = (B \ F).
k—oo

Because [ is metric,
A(E) > (BN F) U Ay) = i(E 0 F) + fi(Ay).

Letting k£ — oo we get
[(E) = pf(ENF)+ u(E\ F).

On the other hand it follows from the monotonicity of the outer measure that
A(E) < i(ENF) + fi(E\ F),
Thus F' is fi-measurable and [ is a Borel outer measure.
The proof of the converse implication is left as an exercise. O
1.20 Regularity of measures, Radon-measures

Among outer measures particularly useful are those with a large class of measurable sets. Such
outer measures are called regular.

Definition 1.21. We say that an outer measure i of X is regular if, for every A C X, there exists
a fi-measurable set E such that A C F and u(F) = i(A) (such a set E is called a measurable cover

of A.)
Definition 1.22. Let X be a topological space.

(a) We say that an outer measure fi of X is Borel regular if u is a Borel measure and for every
A C X there exists a Borel set B € Bor(X) such that A C B and u(B) = i(A).

(b) Let (X, M, ) be a measure space such that Bor(X) C M (i.e. u is a Borel measure). Then
the measure p is called Borel regular if for every A € M there exists B € Bor(X) such that
A C B and u(A) = u(B).

Lemma 1.23. If i is a Borel reqular outer measure in X and A C X is fi-measurable s.t. p(A) <
oo, then fic A is Borel regular. If A € Bor(X), then the assumption u(A) < oo is not needed.

Proof. Exercise. U

Theorem 1.24. Let [i be a Borel reqular outer measure in a metric space X, A C X [i-measurable
and € > 0.
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(a) If 1(A) < oo, then there exists a closed set C C A s.t. u(A\C) <e.

(b) If there exist open sets Vi,Va,... C X s.t. A C U2, Vi and p(V;) < oo Vi, then there exists
an open set V.C X st. ACV and p(V \ A) < e.

Proof. (a): By replacing i with a Borel regular outer measure it A (see Lemma 1.23) we may
assume that fi(X) < co. We first prove the claim for Borel sets A. Let

D={ACX:Ve>03closed C C Aand open VD As.t. u(V\C) < e}.

We easily see that D satisfies condition (1) and (2) in the definition of a o-algebra. Suppose that
Aq1,As,... € D and let € > 0. Then there exists closed sets C; and open sets V; s.t. C; C A; C V;
and u(V; \ C;) < /2%, Now V = |J, Vi is open and

p(VAUG) <3 nVinG) <«

———
CU;(Vi\Gi)

On the other hand, by Theorem 1.10 (b)

lim p(V\ CJ Ci) =n(V\ [jci)7

n—00
i=1 i=1

and hence there exists n s.t. .
M(V \ U CZ) < €.
i=1

Because J;; C; is closed, D satisfies also the condition (3) of a o-algebra. We next show that D
contains closed sets. Let C' be closed and

Vi={z e X: dist(z,C) < 1/i}.

Then V; is open, V1 D Vo D -+, and C = (), V;. Therefore lim; o, 11(Vi) = p(C) and lim; 00 po(V5 \
C) = 0. This implies that C' € D. Thus D is a o-algebra containing all closed sets. In particular,
Bor(X) C D. Therefore part (a) holds for all Borel sets.
Suppose next that A is fi-measurable and p(A) < co. Because i is Borel regular, there exists
a Borel set B D A s.t. p(A) = pu(B). Then u(B\ A) = 0. Furthermore, there exists a Borel set
D> B\ Ast. u(D)=0. Now E= B\ D is Borel, E C A, and
w(A\ E)=0.

N——
cD

Applying the first part of the proof to the Borel set E' we conclude that, for each € > 0, there exists
a closed set C C E =B\ D (C A) s.t. u(E\C) < e. But then

p(ANC) < p(A\ E) + (BN C) <,

and hence (a) holds for the set A.
(b) By applying part (a) to the set V; \ A we obtain closed sets C; C V; \ A s.t.

p(Vi\ A\ C;) < e27".
Then V = (J;(Vi \ C;) is open, A C V and pu(V \ A) < e. O
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Remark 1.25. The Borel regularity of the outer measure was not needed to prove claims (a) and
(b) for Borel sets A. Therefore Theorem 1.24 holds for all Borel outer measures, if we, furthermore,
assume that A is Borel.

We also have the following version of Theorem 1.24

Theorem 1.26. Let i be a Borel regular outer measure in a metric space X and

where V; is open and p(V;) < oo for each j € N. Then

(1.27) a(A) = inf{u(U): U open, A C U}
for every A C X, and

(1.28) p(A) = sup{u(C): C closed,C C A}
for every p-measurable A C X.

So called Radon measures will be important in what follows. These will be defined next. Recall
that a topological space X is locally compact, if every point z € X has a neighbourhood with com-
pact closure. A topological space is Hausdorff, if its distinct points have disjoint neighbourhoods.

Definition 1.29. Let X be a locally compact Hausdorff space. We say that a measure p is a
Radon measure, if u is a Borel measure and

(a) p(K) < oo for all compact K C X;
(b) (V) =sup{u(K): K CV compact} for all open V C X;
(¢) w(B) =inf{u(V): BCV and V C X open} for all Borel sets B € Bor(X).

Remark 1.30. 1. In general, a Borel regular measure (in a locally compact Hausdorff space)
need not be a Radon measure.

2. On the other hand a Radon measure need not be Borel regular: Let A C R be non-Lebesgue
measurable, ji = m*LA and

p=ja|{E C R: E fi-measurable}.
Then p is a Radon measure, but not Borel regular.
In some cases Radon measures can be easily characterised.

Theorem 1.31. Let u be a Borel measure in R™. Then u is a Radon measure, if and only if u is
locally finite, i.e.

Vo € R", u(B(z,r)) < oo, when 0 <7 < 7y
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Proof. Tt follows from Definition 1.29 (a) that all Radon measures are locally finite.

Suppose next that p is locally finite Borel measure in R”. If K C R" is compact, then choose
for every x € K an open ball with centre at x with a finite measure. Because K is compact, it can
be covered with finitely many such balls. Therefore the measure of K is finite and (a) holds.

We next prove conditions (b) and (c) for every Borel set A C R™. By applying part (a) of
Theorem 1.24 (see also Remark 1.25) for Borel sets A; of finite measure,

A =ANDB(0,i), B(0,i)={zeR": |z| <i},
we find closed sets C; C A; s.t.
,U(AZ \ Cz) < 1/i.

Then Cj is a compact set as a closed and bounded set (in R"”). Now

H(A) > p(A) > p(Ch) > p(Ay) — 1/i =22 (4.

This implies (b). Because A C |J; B(0,%) and u(B(0,i)) < oo, it follows from Theorem 1.24 part
(b) that there exist open sets V; C R" s.t. A C Vj and p(V; \ A) < 1/j. Then

p(A) < p(Vi) = p(A) + u(V; \ A) < p(A) +1/5,
This implies (c). O

Corollary 1.32. Let ji be a locally finite metric outer measure in R™. Then the measure pu =
alM, M ={A CR": A i-measurable}, determined by fi is a Radon measure.

Remark 1.33. Theorem 1.31 holds also more generally. For example, if X is a locally compact
metric space, whose topology has a countable base.

Convention: From now on we call an outer measure fi simply a measure and (to simplify the
notation) we denote it by pu.

Note that outer measures and measures come in a sense hand in hand. Indeed, an outer measure
fi: P(X) — [0,+00] defines the measure p = fi| M, where M is the o-algebra of ji-measurable sets
and, on the other hand, every measure p: M — [0, 4+o00] defined on a o-algebra M C P(X) can be
extended to an outer measure fi: P(X) — [0, +00] by setting

fa(A) =inf{u(B): AC B e M}.

Let u be regular and A; C A; 11 C X for i € N. We have the counterpart of Theorem 1.10 (a)

p(lJ Ai) = lim p(A))

) 1—00
=1

even if the sets A; are not assumed to be pu-measurable.

Let then X be a locally compact, separable metric space. We say that u is a Radon (outer)
measure if p is Borel regular and if y is finite on compact subsets of X. Then such a measure pu
has the properties

w(A) =inf{u(U): U open, A C U}

for every A C X and
p(A) = sup{u(K): K compact, K C A}
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for every p-measurable A C X.

Since p is finite on compact sets, we can integrate continuous functions with compact support.
In particular, if H is a Hilbert space with inner product (-,-) and if Cy(X, H) denotes the space of
continuous functions X — H with compact support, then associated to each Radon measure p and
each p-measurable H-valued function v: X — H, with |v| =1 p-a.e., we have the linear functional
L: Cy(X, H) — R defined by

L) = [ (1) dn.
X
The following Riesz representation theorem gives the converse:

Theorem 1.34. Let H be a finite dimensional Hilbert space and let L: Co(X, H) — R be a linear
functional such that

sup{L(f): f € Co(X, H),|f| < 1,supp f C K} < o0

for each compact K C X. Then there exist a Radon measure p and a p-measurable mapping
v: X — H such that |v(z)| =1 for p-a.e. x € X and

L(f) = /X (f.v) du

for every f € Co(X, H).

We will return to this later.

1.35 Hausdorff measure

The Lebesgue n-dimensional measure m,, is well suited for the measurement of the size of “large”
subsets of R™, but it is too crude for measuring “small” subsets of R". For example, mo cannot
distinguish a singleton of R? from a line, because both have measure zero.

In this chapter we introduce a whole spectrum of “s-dimensional” measures H*, 0 < s < oo,
which are able to see the fine structure of sets, better than the Lebesgue measure. The key idea is
that a set A C R™ is “s-dimensional”, if 0 < H®*(A) < oo, even if the geometric structure of A were
very complicated.

These measures can be defined in any metric space (X,d). We suppose, however, that X is
separable, i.e. X has a countable dense subset S = {z;}°,, and hence X = S. This assumption is
only needed to guarantee that X has so called d-covering for all § > 0.

Definition 1.36. 1. The diameter of a nonempty set £ C X is

d(E) = sup d(z,y).
zyel

2. A countable collection {E;}?°, of subsets of X is a d-covering, § > 0, of A C X if

Ac|JE; and d(E;) <dVieN
i=1

We fix a “dimension” s € [0,00) and § > 0. For A C X, we define

(1.37) H3(A) = inf{ws Z(d(Ei)/2)s: {E;} is a d-covering of A},
i=0
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where w; is the volume of the unit ball in R® in case s is a positive integer and otherwise some
convenient positive constant, and where we make the convention that (d({z})/ 2)0 =1Vx € X and
(d(0)/2)° =0 Vs > 0.

We readily see from the definition that

if 0 < 0; < d2. Therefore the following limit (1.39) exists and we can set the definition.

Definition 1.38. The s-dimensional Hausdorff (outer) measure of a set A C X is

(1.39) H(4) = lim H3(4) <: sup H§(A)> .

Remark 1.40. The constant ws above is usually chosen as

71.8/2

where I'(t) = fooo e Tzt~ ldz, 0 <t < oo, is the usual gamma function.
In particular, this guarantees that H™ and the n-dimensional Lebesgue outer measure m) co-
incide in R", i.e.

H™M(A) = m%(A) VACR™.

n

We will not prove this identity. For the proof, see e.g. [Si].
Theorem 1.41. (i) Hj: P(X) — [0,400] is an outer measure for all § > 0.
(11) H*: P(X) — [0,400] is a metric outer measure.

Proof. (i) (a) Clearly H3(0) = 0.
(b) Let then A C |U;2; Ai C X. We may suppose that 7j(A;) < oo Vi. Let ¢ > 0 and

choose for every ¢ a d-covering {E; ] of the set A; s.t.

ws Y (d(ED)/2)° < H3(A) +e27".

j=1
Then U, ; E]Z is a d-covering of the union J;2; A; and thus also of A and therefore
H3(4) < w3 (dED/2)"
i7j

< (IHE(AZ) + 62_i)

8

=1

e+ > Hi(A).

=1

IN

Letting € — 0 the desired conclusion follows.
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(ii) Clearly H*(0) =0. If A C J;2; Ai C X, then by part (i) and the definition of H*® we obtain
H5(A) < D H5(A) < D HI(A).
i=1 i=1

Letting 0 — 0 we see that H® is an outer measure. Let then Ay, A5 C X be sets, for which
dist(Ay, Az) > 0. We wish to show that

HS(Al U Ag) = HS(A;[) + HS(AQ).
It is enough to show that
(1.42) H3(AL U Ag) > H3(A) + Hi(As),

if & < dist(Aq,A2)/3. We may assume that H3(A; U Ay) < co. Let € > 0 and choose a
d-covering {E;}°, of the set A; U Ay such that

o0

we Y _(d(E;)/2)° < H3(A1 U Ay) +&.

i=1

Because § < dist(Aq, A2)/3, every F; intersects at most one of the sets Ay or Ay. Therefore
we may divide the d-covering {E;}32, of A; U Ag into two disjoint d-coverings of A; and A

as
{Ei}2) = {E}2 U{E '},
where . .
A C UE; and Ao C UE;,
i=1 i=1
Therefore
H5(AL) + Hy(A2) <we Y (d(E])/2)" +ws > (d(E])/2)°
i=1 i=1
=we > (d(E)/2)°
=1

Because € > 0 was arbitrary, we obtain (1.42).
O

On the basis of Theorems 1.18 and 1.41 every Borel-set of X is H*-measurable. We denote the
restriction of H® to H*-measurable sets with the same symbol H*. Now there holds:

Theorem 1.43. H?® is a Borel-measure.
Corollary 1.32 yields now:
Corollary 1.44. If A C R" is H®-measurable and H*(A) < oo, then H°LA is a Radon-measure.

Theorem 1.45. The outer measure H® of a separable metric space X is Borel-regular.
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Proof. Because by the previous theorem the outer measure defined by H® is Borel, it is enough to
show that for all A C X there exists B € Bor(X) s.t. A C B and H*(A) = H*(B).

Let A C X. If H%(A) = oo, we may choose B = X and the claim holds. If #*(A) < oo, then
we choose a 1/i-covering {E;}]O‘;l of A for each i € N s.t.

ws > (d(B})/2)° < H5(A) +1/i.
j=1
Because d(E) = d(E) for all E C X, we may suppose that the sets E; are closed. Then
B=UZ
i=1j=1

is a Borel set and A C B. Furthermore, {E;} is a 1/i-covering of B for all i € N, and hence

$i(A) SH;(B) <ws Y (d(ED)/2)° < HS j(A) + 1/
j=1
Letting ¢ — oo the claim H*(A) = H*(B) follows. O
Remark 1.46. 1. H" is the counting measure.

2. ‘H§ is not, in general, a metric outer measure.
3. Roughly speaking H! ~ is a length measure, H? ~ is area, etc.

4. Tt is easily seen that (e.g.) the plane R? is not o-finite with respect to H!.

1.47 Hausdorff dimension

Let (X, d) be a separable metric space. In this chapter we shall define a dimension for sets A C X,
which reflects the metric size of the set A. Unlike the topological dimension, this dimension need
not be an integer.

Lemma 1.48. Let A C X and s > 0.
(i) If H*(A) < oo, then H'(A) =0 for all t > s.
(ii) If H5(A) > 0, then H'(A) = oo for all 0 <t < s.

Proof. 1t is enough to prove (i), because the claim (ii) follows from (i). Let § > 0 and {E};}72, be
a d-covering of A s.t.

wsi(d(Ej)ﬂ)s <HI(A)+1<H(A)+1 < oo
j=1
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Then for all ¢t > s

IN

= (6/2)""ws > _(d(E;)/2)°

w
s =1

(6/2)'70 (H(4) + 1),

IN

The claim follows by letting o — 0. O
Definition 1.49. The Hausdorff dimension of a subset A C X is a number
dimy (A) = inf{s > 0: H*(A) = 0}.
Summarizing what was said above:
1. If t < dimy(A), then H!(A) = oo.
2. If t > dimy(A), then H!(A) = 0.

In general, about the value H*(A), for s = dimy(A), we cannot say anything: it can take any value
in [0, 00]. Nevertheless:

(1.50) 0 <H(A) <oo = dimy(A) =s.
A set A C X, for which 0 < H*(A) < oo holds, is called an s-set.
Lemma 1.51. (i) If A C B, then dimy(A) < dimy(B).

(ii) If A, C X, k € N, then

dimH(U Ak) = sgp dimy (Ag).
k=1

Proof. (Exerc.) O

Thus, for example, dimy(Q) = 0.

1.52 Hausdorff measures in R"

Next we evaluate (or rather estimate) Hausdorff measures and dimensions of Cantor type fractal
sets in R™. To this end we study the invariance properties of Hausdorff measures. There are other,
more efficient, methods for the determination of the Hausdorff dimension but these will not be
discussed in this course.

Recall first that a mapping 7': R™ — R" is an isometry, if

|Tx —Ty|=|z—y| VYx,yeR™
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It is well-known that every isometry of R™ is an affine mapping, i.e. of the form
Tx =a9+ Uz,

where ap € R"® and U: R® — R" is a linear isometry.
In the same way, a mapping R: R™ — R" is said to be a similarity, if

|Rz — Ry| = clx —y| Vz,y € R",
where ¢ > 0 is a constant (stretching factor, scaling factor, etc.). Then R is of the form
Rx =ag+cUz,

where U is again a linear isometry.
Theorem 1.53. Let A C R". For the outer measure H*, s > 0, there holds:

(a) H¥(A+z9) =H(A) Vao € R,

(b) H*(U(A)) = H*(A) for all linear isometries U: R™ — R",

(c) H*(R(A)) = c*H*(A), if R: R" — R" is a similarity map, with scaling factor ¢ > 0.

Proof. The claims follow from the observation that d(R(E)) = cd(E) VE C R", where R is as in
part (c). O

Let (X,d;) and (Y, d2) be metric spaces. Recall next that the mapping f: X — Y is L-Lipschitz
(with a constant L > 0), if

da(f (), f(y)) < Ldu(x,y)
for all z,y € X. In the same way, a mapping g: X — Y is L-bilipschitz, if

%dl(x,y) < dy(f(z), f(y)) < Ldyi(z,y)

for all ,y € X. We observe that an L-bilipschitz mapping is always an injection because of the
inequality on the left hand side.

Lemma 1.54. Let (X,dy) and (Y, ds) be separable metric spaces.
(i) If f: X — Y is L-Lipschitz, then

H(FA) < LH5(A) VA C X.

(ii) If g: X — 'Y is L-bilipschitz, then

dimy(gA) = dimy(A) VA C X.

Proof. (1) We may suppose that H*(A) < co. Fix € >0, § > 0 and choose a d-covering {F;}52,
of As.t.

o0

we Y (d(E))/2)° <H3(A) +e.

J=1



Fall 2016 17

Then {f(E;)}52, is a Ld-covering of fA and hence

His(fA) <w Z
7=1
< Lwe > (d(E;)/2)°
j=1

< L¥(H5(A) +¢).
The claim follows by letting € — 0 and § — 0.
(ii) Applying part (i) to the mapping g~ ': g(4) — X we obtain
L™H?(A) < H?(gA).
Thus
L™*H(A) < H*(gA) < LH(A),

which yields the claim.
O

We next construct sets with noninteger Hausdorff dimension. Recall the construction of the
Cantor set from Real Analysis I. (We use slightly different notation and consider only a special
case.)

Let 0 < A < 1/2. Denote Iyp; = [0,1], I11 = [0,A] and 12 = [1 — A, 1]. In other words, I,
and I o is obtained from Iy by removing its middle interval with length 1 — 2. Next we remove
open interval of length (1 — 2X)A from the middle of closed intervals I; ; and continue the process
inductively. Suppose that the intervals I,,;, i = 1,...,2" of step n have been defined. Then the
intervals Ip,415, 7 =1,... , 2"+ of the step (n + 1) are obtained by removing an open interval of
length (1 — 2A\)A" from the middle of the intervals of step n. Thus

d(I,;) =", VnandVi=1,...,2"

Denote
27L
= U In,i
i=1

(“approximation of the nth step”) and

n=1

Then C(\) is compact, uncountable set, without interior points. Furthermore C'()) is “selfsimilar”
and my (C(X)) = 0. Cantor’s 1/3-set C(1/3) is a special case of this construction, recurrent in
literature.

Io,1
Co

C

12,1 12,4
Co
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Theorem 1.55. For all0 < A < 1/2

log 2

dimy C(\) = Tog(1/N)°

In particular, dimy C(X) can attain all values in the interval (0,1).

Proof. 1t is enough to show that

(1.56)

if

(i)

27wy < HS(C(N)) < 275w,

~ log2

log(1/A)”

We first give a heuristic argument for finding the exponent s: Clearly
C(\) =CLUCy,

where C and Cy are disjoint and similar to C'(A) with the scaling factor A. If C'(\) would
satisfy (1.56), then by part (c) of Theorem 1.53

H*(C(N) = H(C1) +H*(Ca)

= 2\%H? (C’(/\))
Thus
1= 2%,
Solving this for s yields
_ log2
- log(1/A)°

A rigorous proof of (1.56): If § > 0 is given, then choose n € N so large that A < 4. Then
{IL.;}?~, is a d-covering of C'(\) and, furthermore,

on on on

H3(CN) Sws D (A"/2)" = 27w, Y (A" =2w, » (1/2)" =2 %w,.

i=1 i=1 i=1
Thus
H?® (C’(/\)) < 27%w,.

We give a proof for the lower bound (1.56) only in the special case A = 1/3. The general case
A € (0,1/2) would not bring any essential changes to the proof. Suppose that {£;}32, is a
o-covering of C(1/3) such that

o0

we Y (d(E;)/2)° <H*(C(1/3)) +6, s

J=1

_ log2
~log3’

For each j choose a closed interval I; (= [a,b]) s.t. E; C intI; (=]a,b]) and d(I;) < (1 +
6)d(E;). Then {int [;}22, is an open covering of C(1/3), and hence by the compactness of
C(1/3) we can choose a finite subcover. By relabelling the intervals I; , we may suppose that

Jj=1
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and

To prove the lower bound (1.56) it is enough to prove that

m

L1
(1.57) > dL) = 5,

Jj=1

if {I;}71, is a covering of C'(1/3) with finitely many closed intervals I;. For each j choose
k = k(j) € N, with

(1.58) 3=+ < q(1;) < 37,

Let ko be the largest one of the numbers k(j),7 = 1,...,m. On the basis of the construction
and the choice of the number k = k(j), each I; can intersect only one of the intervals I} ;
of step k. Therefore I; intersects at most 2ko=k(7) of the intervals I koi- Thus the number of
such intervals of step kg is at most

m

Z oko—k(5)

j=1

On the other hand, there are 20 intervals of step ko. Every one of these contains points of
C(1/3) and C(1/3) C Uj~, I;, and hence

m
oko < Z oko—k(j)
j=1

Now we can compute

m m
9ko < Z2k0_k(j) — 9ko Z 9—k(j)
J=1 J=1

Simplification yields

> d(I;)f =370 =1/2.

Jj=1

Remark 1.59. Refining the above argument one can show that
log 2
(CN) =1, s= ————

(cf. Falconer, K. J.: The geometry of fractal sets, Cambridge University Press, 1985, pages 14-15).



20 Geometric Measure Theory

1.60 Riesz representation theorem

Recall the following general form of the Riesz representation theorem. Let X be a locally compact,
separable metric space, and let H be a finite dimensional Hilbert space with the inner product
(+,). Denote by Cy(X, H) the space of all continuous mappings X — H with compact support. If
L: Cy(X,H) — R is a linear functional such that

sup{L(f): f € Co(X, H),|f| < 1,supp f C K} < o0

for all compact K C X, there exist a Radon measure p and a py-measurable v: X — H such that
|v(z)| =1 for v-a.e. x € X and

L(f) = /X (f v)dp

for every f € Co(X, H).
See, for example, [Si, Theorem 4.1]. We will consider the special case X = R™ and H = R in
the home work classes.

Definition 1.61. A mapping A: Cyp(R",R) — R is a positive linear functional if
(i) Alafi+ Bf2) = aA(f1) + BA(f2) for all fi1, f2 € Co(R™,R) and all o, 8 € R.
(ii) A(f) >0 for all f € Cy(R™,R), with f(z) >0 Vz € R™.

Theorem 1.62 (Riesz representation theorem). Let A: Co(R",R) — R be a positive linear
functional. Then there exists a unique Radon measure p, more precisely, a measure space
(R™, Bor(R™), ), such that

M) = [ S dnto)
for all f € Cy(R™,R).

The proof of Riesz representation theorem is based on an auxiliary result.

Lemma 1.63. (a) Let V. C R"™ be open and K C V compact. Then there exists f € Co(R™,R)
such that
supp(f) CV  and xg(z) < f(x) <1 VzeR™

(b) Let V; CR™, j =1,...,m, be open and K C U;nzl V; compact. Then there exist functions
hj S CQ(R”,R), with

0<h;j <1, supp(h;) CV; and xk < Zhj <1.
j=1

1.64 'Weak convergence of measures

Definition 1.65. Let ug, k € N, be Radon measures in R”. We say that a sequence (uy) converges
weakly to a Radon measure a p, if

lim fdukzj fdu
]Rn

k—o0 Rn

all f € Co(R™, R). This is denoted by pg — g or py — p.
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Example 1.66. (i) Let ¢, be the Dirac measure at € R. Then d; — 0.

(ii) Let pg = %(51/1@ + 0t + 5k/k). Then for all f € Cp(R,R)

i 1 . k—o0 !
| = O | f@as,

because the sums are Riemann sums of the function f on [0,1]. Thus pui — myc[0,1].

Easy examples show that it is not always true that ug(A) — u(A), if i — p. However, there
holds:

Theorem 1.67. Let pu, pg, k € N, be Radon measures in R"™ such that pp, — p. Then
(a) limsup;_,.o pk(K) < p(K) if K C R™ is compact,

(b) iminfy_, o ux (V) > w(V) if V.C R™ is open.

1.68 Compactness of measures

The weak convergence of measures is not merely natural but also a very useful notion. The families
of bounded Radon measures are sequentially compact. In many cases this is the only way to
construct measures (as limiting measures of weakly convergent sequences).

Theorem 1.69. Let (u) be a sequence of Radon measures in R™ with

sup p(K) < 00
k

for all compact K C R™. Then there exists a subsequence (,ukj) and a Radon measure p with

Py — M-

The proof of of this theorem will be discussed in the home work classes.

2 Lipschitz mappings and rectifiable sets

2.1 Extension of Lipschitz mappings

Next we present a useful extension result of Lipschitz mappings.

Theorem 2.2 (McShane-Whitney extension theorem). Let X be a metric space, A C X, and
f:+ A— R L-Lipschitz. Then there exists an L-Lipschitz function F': X — R such that F|A = f.

Proof. For every a € A we define an L-Lipschitz function f*: X — R
fYz) = f(a)+ Lla—z|, ze€lX.
The function F' is then defined by setting

F(z) = glelgf“(x), r e X.



22 Geometric Measure Theory

Clearly F(z) < oo Yz € X. By fixing agp € A we see that

fla) + Lla — z| > f(a) + L|a — ag| — Ljag — =
> f(ao) — L|ag — z|.

Hence F(x) > —oo for all x € X. Since every f* is L-Lipschitz and F'(x) > —oo for all x € X, F
is L-Lipschitz. Moreover, for every x € A

Fx) < f*(x) = f(z) < f(y) + Lz —yl = f(z) Vy €A,

and hence F|A = f. O

Corollary 2.3. Let X be a metric space, A C X, and f: A — R™ L-Lipschitz. Then there exists
a v/nL-Lipschitz mapping F: X — R™ such that F|A = f.

Proof. Apply Theorem 2.2 to the coordinate functions of f. O

Remark 2.4. 1. Theorem 2.2 holds (as such) in the case X C R™, f: X — R", but the proof
is much harder. This is so called Kirzbraun’s theorem.

2. It is a topic of quite active current research to study which pairs of metric spaces X,Y have
a Lipschitz extension property (i.e. for every A C X every Lipschitz mapping f: A has a
Lipschitz extension F': X —Y).

2.5 Rademacher’s theorem

According to Rademacher’s theorem a Lipschitz mapping R™ — R™ is differentiable m,-a.e. Let
us first recall the following definition.

Definition 2.6. A mapping f: R” — R™ is differentiable at x € R™ if there exits a linear mapping
L: R™ — R™ such that

i W) = f(@) = L(y — 2)|

—0
y—a ly — x|

or, equivalently,
fy)=f(@)+ Ly —x) +o(ly —z|) as y — .

If such L exists, it is unique and we denote it by D f(z) and call it the derivative of f at x or the
differential of f at x.

Theorem 2.7 (Rademacher’s theorem). Let f: R™ — R™ be locally Lipschitz, i.e. for each compact
K C R"™ there exist a constant Lig < oo such that

lf(x) — f(y)| < Lkglx —y| Vr,y€ K.
Then f is differentiable my,-a.e. in R™.

The proof will be discussed in home work sessions.
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2.8 Linear maps and Jacobians

Let us start with the following fact: Suppose that L: R™ — R” is linear. Then
my(LA) = |det Lim) (A)

for every A C R"™  We will not prove this formula (think of the special case Lz =
(c1z1, 029, ..., cpy), where c1,...,¢, € R). We want to have a counterpart of this ”area for-
mula” in case L: R” — R™ is linear. Towards this end, let us first recall the following notions
related to linear algebra (without proofs).

Definition 2.9. (i) A linear map O: R" — R™ is orthogonal if

Ox-Oy=x-y Va,yeR"

(ii) A linear map S: R™ — R" is symmetric if

x-Sy=Sx-y Va,yeR"

(iii) A linear map D: R™ — R" is diagonal if there are constants dy, ... ,d, such that

Dz = (dyz1,...,dpxy,) Vo= (x1,...,2,) € R

(iv) The adjoint of a linear map L: R™ — R™ is the linear map L*: R™ — R"™ defined by
x-L'y=(Lx)-y VereR"yecR™
Theorem 2.10. (i) L™ = L.
(ii) (AB)* = B*A*.
(iii) O* = O~ if O: R® — R™ is orthogonal.
(iv) S* =8 if S: R" — R" is symmetric.

(v) For every symmetric map S: R™ — R™ there exist an orthogonal map O: R™ — R™ and a
diagonal map D: R™ — R™ such that

S =0DO™ .

(vi) If O: R™ — R™ is orthogonal, then n < m and
0*0 =id in R",
0OO0* =id in OR".
Theorem 2.11 (Polar decomposition). Let L: R™ — R™ be a linear mapping.

(i) If n < m, there exists a symmetric map S: R™ — R™ and an orthogonal map O: R™ — R™
such that
L =068.

(ii) If n > m, there a symmetric map S: R™ — R™ and an orthogonal map O: R™ — R™ such
that
L=50"
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For the proof, see e.g. [EG]. We are now ready to define the Jacobian of a linear map L: R" —
R™,

Definition 2.12. Let L: R™ — R™ be a linear mapping.
(i) If n <m, let L = OS be as above and define the Jacobian of L as
[L] = |det S|.
(ii) If n > m, let L = SO* be as above and define the Jacobian of L as
[L] = |det S|.
Theorem 2.13. (i) Ifn < m, then [L]? = det(L*L).
(i) If n > m, then [L]? = det(LL").
(iii) 2] = [2°].
Remark 2.14. The Jacobian [L] is well-defined since it is independent of the choices of S and O
by Theorem 2.13.
2.15 Jacobians of Lipschitz mappings

Let f = (f1,..., fm): R" — R™ be a Lipschitz mapping. By Rademacher’s theorem, f is differen-
tiable at my-a.e. € R™. Hence the derivative D f(z) exists and can be expressed as a matrix

oh 0A ... OA
o1 0o 0xn
Df(z)=| : : :
fm  Ofm . Ofm
o1 0o 0zn

at my-a.e. x € R™.

Definition 2.16. The Jacobian of f at a point x, where f is differentiable, is
Jp(x) = [Df(2)].

2.17 The area formula

Some details will be discussed in the home work classes.
In this subsection we assume that n < m and that f: R” — R™ is Lipschitz.

Lemma 2.18 (Area formula for linear maps). Let L: R" — R™, n < m, be a linear map. Then
H"(LA) = [L]m;(A) VACR".
Note that we have defined H" so that H" = m;, in R".
Lemma 2.19. Let A C R" be Lebesgue measurable. Then
(i) fA is H"-measurable,

(it) the mapping y — HY (AN f~1(y)) is H"-measurable, and
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(iii)
[ HOAN £ )M ) < (Lip($) ().

Lemma 2.20. Lett > 1 and B = {x € R": the deriative D f(x) exists and J¢(x) > 0}. Then
there exists a countable collection E) € Bor(R"™),k € N, such that

(1)
o
B= U Ey,
k=1
(ii) f|Ey is one-to-one,
(iii) for every k € N there exists a symmetric automorphism Ty: R™ — R™ such that
Lip((f|Ex) o T;") <,

Lip(Ty o (f|Ex)~") < t,
t7"|det Ty | < Jf\Ek < t"|det Tk|.

The message of the lemma is that f can be locally approximated by a symmetric automorphism
as closely as we wish.

Theorem 2.21 (The area formula). Let f: R™ — R™, n < m, be a Lipschitz mapping. Then for
every my-measurable set A C R"

/ T5(@)dimn(x) = / HO(AN £ () dH" (y).
A m

Corollary 2.22 (Change of variables). Let f: R™ — R™ be a Lipschitz map, n < m. Then for
each my-integrable g: R™ — R

| s@n@an@ = [ {3 g | aww)

z€f~1(y)
As an application let us consider the surface area (measure) of the graph of a Lipschitz function

g: R" = R. Define f: R* — R"" f(z) = <:17,g(3:)) Then

1 0 0 O
0 1 0 :
I,
Df=1: 0o |= <vg>
0 0 0 1
99 089 ... ... 99
o1 Oxo 0xn

and J]% =1+ |Vg|?. For each open U C R", the graph of g over U is

I'=Tyv ={(z,9(z)): 2 € U}
and

H'(T) = /U V14 |Vgl2dm,(x).
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2.23 The co-area formula

In this subsection we assume that n > m. Some details will be discussed in home work classes.
Let us start with linear maps L: R™ — R™, n > m. Consider first the special case where
L:R" =R™ x RF — R™ is the orthogonal projection onto R,

L(xlv <oy Tmy Tmt1s - - - 7$m+k) = (331,- . ,ﬂj‘m).

Then for each y € R™ the preimage L~'(y) is an affine (n—m)-dimensional subspace. The preimages
L~Y(y), y € R™, decompose R™ into parallel (n — m)-dimensional slices. By Fubini’s theorem

- H'" (L™ Hy) N A)dmp,(y) = H"(A) = m,(A)

whenever A C R is Lebesgue measurable. For a general linear map L: R™ — R™, n > m, we have
the following.

Lemma 2.24. Let L: R" — R™, n > m, be a linear mapping and A C R™ Lebesgue measurable.
Then

(i) the mapping y — H" "™ (AN L (y)) is my-measurable, and
(ii)
/ HM (AN L_l(y))dmm(y) = [L]m,(A).
Similarly to the case of area formula, we have:

Lemma 2.25. Let f: R™ — R™, n > m, be a Lipschitz mapping and A C R™ Lebesgue measurable.
Then

(i) fA is my,-measurable,
(ii) AN f=Y(y) is H* ™-measurable for m,,-a.e. y € R™,
(iii) the mapping y +— H"™™ (A N f_l(y)) 18 My, -measurable, and

(i)
wn—mwm

[ an g w)dm ) < (Lip f)"ma(4).

n

Lemma 2.26. Lett > 1 and h: R® — R™ Lipschitz. Let
B = {x € R": Dh(x) exists and Jp(x) > 0}.
Then there exists a countable collection Dy € Bor(R™), k € N, such that
(i) mn(B\ UpDy) =0,
(ii) h|Dy is one-to-one, and
(iii) for each k there exists a symmetric automorphism Si: R™ — R™ such that

Lip(S, ' o (h|Dy)) <t,
Lip((h|Dx)~" 0 S) <,
t7"|det S| < Jh\Ek < t"|det S|



Fall 2016 27

Note that above both the domain and the target of h is R™. For the proof of Lemma 2.26 we
apply Lemma 2.20 to find sets Fj, such that each h|FE} is one-to-one and then we apply Lemma 2.20
again to (h|Ey)~! in hEy.

Theorem 2.27 (The co-area formula). Let f: R"™ — R™, n > m, be a Lipschitz map. Then for
each my,-measurable set A C R"

[ s@ama@) = [ #4057 ) dm),
Corollary 2.28 (Change of variables). Let f: R™ — R™ n > m, be a Lipschitz mapping. Then
for each my-integrable function g: R™ — R, g|f~(y) is H" ™-integrable for mmy-a.e. y € R™ and

g@)Jp(@)dma(x) = [ | [ gdH"™ | dmm(y).
=)

As an application we consider level sets of a Lipschitz function f: R™ — R. Then Jy = |V f|
and hence

Vldma = [~ W = )
R —o0

2.29 Rectifiable sets
Let us start with the following two examples

Example 2.30. Let Jy = QY = [0,1]? be the closed unit square of the plane and let J; be the
union of four closed squares Q%, i =1,...,4, in its corners, each with edge length 1/4. In the
next step each of the four squares Qil, 1=1,...,4 of Jq, will be replaced with four corner squares

?, j =1,...,16, each with edge length 1/16. Continuing in this way in the step n we have 4"
squares Q?, 7 =1,...,4" each with egde length 47". Let

"
= Q5
j=1

and -
J=()n
n=0
Then J is a set of Cantor type. In fact, J = C(1/4) x C(1/4).
Jo J1 J2
W cc oo
O 0O O 0O
Q3 Qi Q3
Wl W cc oo
O 0O O 0O
J3

" o
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What is the Hausdorff dimension dimy, J of J? We find a suitable candidate for dimy, J by using
similarities. Observe that A
J = |_| ji7
i=1

where J; is similar to J with the scaling factor 1/4, and hence H*(.J;) = (1/4)H*(J) and further
HA(JT) = 4(1/4)°H*(J).
If J is an s-set (i.e. 0 < H*(J) < 00), then we get from above that
4(1/4)° =1

which gives s = 1. Let us give some further details. Fix § > 0. Observe first that d(Q7}) = V2/47,
If n € N is so large that v/2/4" < §, then {Q;L ?11 is a d-covering of J and thus

"
MHi(J) <D d(QF) <4"V2/4" = V2.

J=1

Therefore H'(J) < v/2 < co. By an argument similar to that in the proof of Theorem 1.55 one can
show that H'(J) > 0. Thus

dimy(J) =1 and 0<HY(J) < oo,

in other words J is a 1-set. However, its geometric structure is very different from that of a
rectifiable curve.

Remark.: A positive lower bound can also be found by using an orthogonal projection P: R? —
S onto a line S with slope —2. Then the image set P(J) is a segment with length 3//5. Because
the projection P is 1-Lipschitz, then H'(J) > H'(P(J)) = 3/v/5. In fact, it can be shown that
HY(T) = V2.

It was pointed out above that J = C(1/4) x C(1/4). Observe that dimy (J) =1 = 2log2/log4 =
dimy C(1/4) + dimy C(1/4).

Example 2.31. Let ¢i, go, ... be those points of the closed unit disk D = {z € R?: |z| < 1} whose
both coordinates are rational numbers. These points form a countable dense subset of D. Let

(s,
7j=1
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where ‘
S;={r eR*: |z —gqj| =277}
Now

0<HNE) <D 2r277 =21 < o0.
j=1

Thus E is a 1-set and dimy £ = 1. However, E is dense in D, END = D, and therefore E is “very
big”. In which sense does E resemble a rectifiable arc?

These and other similar examples raise several questions:
e In which sense the Cantor-set of Example 2.30 is different from a rectifiable arc?

e What kind of set is a general 1-set? Is there a way to distinguish between “Cantor-type” and
“rectifiable” parts and how these parts could be defined?

e Rectifiable arcs have tangent lines a.e. Does this property have a counterpart for sets such
as in Example 2.317

Recall Lebesgue’s density theorem from Real Analysis I: If E € Leb(R™), then

lim my(E N B(xz,1))

r—0+  my(B(x,r)) =1

for a.e. x € E. It is a natural question whether Hausdorff measures have some similar properties.
Recall that we defined the Hausdorff measure so that H"(B(z,1)) = wy, for B(x,r) C R". Keeping
this in mind we define:

Definition 2.32. Let 0 < s < 0o, A C R"™ and a € R". The upper and lower s-densities of A at
the point a are

©*%(A,a) = limsup

r—0+ Wers
s(A B

@i(Aa (1) = lim inf H ( n ((I, T)) ‘
r—0+ wers

If ©5(A,a) = ©*(A, a), then this value is called the (s-dimensional) density of A at a and denoted
by ©°(4,a).

We study densities using covering theorems. Recall from Real Analysis I the following basic
covering theorem and the notion of a Vitali covering of a set. If B is an open (closed) ball centered
at z with radius r, then 5B is an open (closed) ball centered at x with radius 5r.

Theorem 2.33 (Basic covering theorem). Let F be an arbitrary family of balls of R™ s.t.
D =sup{d(B): B € F} < oc.
Then there exists a countable (possibly finite) family G C F s.t.

B;NBj=0 VB;,B; €G, B;# Bj, i.e. the balls of G are disjoint; and

) Bc |5B.

BeF Beg
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Definition 2.34. Let V be a family of balls in R™. We say that V is a Vitali covering of a set
E C R™if for every x € F and every € > 0 there exists B € V s.t. € B and d(B) < €. The family
V is a closed (open) Vitali covering if every B € V is closed (open) ball.

Theorem 2.35 (Vitali’s covering theorem for Hausdorff measures). Let 0 < s < oo and let V be a
closed Vitali covering of a set E C R™. Then there exists a countable family of disjoint balls B; € V
s.t. either

(2.36) > d(B;)* = o0
i=1

(2.37) H(E\|JBi) =0
i=1

Remark 2.38. Applying so called Besicovitch’s covering theorem we obtain a counterpart of
Theorem 2.35 for a general Radon-measure of R” (see Theorems 77, 77).

Proof. We may suppose that 0 < d(B) < 1 for all B € V. We choose the balls inductively: Let
By € V be arbitrary. Suppose that disjoint balls By, ..., B,, € V have been chosen. Let

dy, =sup{d(B): BeV, BNB; =0 V1 <i<m}.
If d,,, = 0, then
m
E C U B;,

i=1

and the claim is proven ((2.37) holds). Indeed, if there exists x € E \ U",B;, then
dist(z, U2, B;) > 0,

because U ; B; is compact. Because V is a Vitali covering of I/, there would exist B € Vs.t. x € B
and BNU,B; = () and therefore d,,, > 0.

If d,,, > 0, then choose By,+1 € V such that d(By,+1) > dy, /2. If this selection process will not
end for any m, we obtain disjoint balls {B;}3°; C V. Therefore we must show: If

> d(B;)* < oo,
i=1
then the condition (2.37) holds. For this purpose we show first that

k 00
(2.39) E\xUBic |J 5B; VkeN.
i=1 j=k+1

Indeed, if
k
zeE\ U B;,
i=1

then z € B €V, where BN B; = 0 for all 1 < j < k. Because d(By,) — 0 as m — oo, then
d(B) > 2d(By,+1) for some m. Then B must intersect one of the sets Bji1,...,Bnm, because
otherwise

dp > d(B) > 2d(Bymy1) > dpm.
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Let Bj; be the first one of the balls By1,..., B,,, which B intersects. Then

BﬁBj?é@, d(Bj)>dj_1/22d(B)/2 and k+1<j<m.

Thus B C 5B; and (2.39) holds.

[sslt

Finally let 6 > 0. When k is large enough, then d(5B8;) < § for all j > k. Thus

k

1B\ B) <#3(B\ U B)
=1 =1

<H;( |J 5B))

j=k+1

<w27° Y d(5B;)°
j=k-+1

= wy(5/2)* f: d(B;)* =0

j=k+1

as k — oo. Thus -
H3(E\|JBi) =0

i=1

for all § > 0 and (2.37) holds. O
The next theorem is useful when studying local properties of s-sets.
Theorem 2.40. Let 0 < s < oo, A CR", and H*(A) < cc.
(a) 272 < O*(A,a) <1 for H*-a.e. a € A.
(b) If A is H®-measurable, then ©*°(A,a) =0 H*-a.e. a € R"\ A.

Remark 2.41. 1. The lower density ©%(A, a) could be zero for every a € R™ even if H*(A) > 0;
see [Ma, Exerc. 2, p. 99 and 4.12].

2. The upper bound 1 in (a) is sharp for all s > 0. The lower bound 27¢ is sharp for 0 < s < 1,
but it is not known whether it is sharp for s > 1; see [Ma, 6.4 (2)].

Proof. We first prove the left inequality of part (a). Observe first that

{red: 0% (A,x) <27} = [j {x € At H*(AN B(x,7)) < 2%ws(1 = 1/k)r* V0 <r<1/k}

k=1 G,
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and then show that H*(Cy) = 0 for all k € N. Fix k € N, ¢ > 0, and denote C' = Cj. Cover C
with the sets E;, j € N, s.t. 0 < d(E;) <1/k, CNE; # 0, and

< (1—1/k)(H(C) + 2).

Letting ¢ — 0 we see that H*(C') = 0, because 1 — 1/k < 1 and H*(C) < oo.

We next prove the right hand side inequality of part (a). Because H?® is a Borel regular (outer
measure), we may suppose that A is a Borel set. Then Corollary 1.44 shows that H® A is a Radon
measure.

For t > 1, let

E={rxecA: 0%(A x) >t}

We wish to show that H*(E) = 0. Let 6 > 0 and £ > 0. Because H°LA is a Radon measure, there
exists an open set U C R" s.t. £ C U and

HI(ANU) < H(E) +e.

For every x € E there exists a radius r, < /2, for which B(z,r;) C U and a sequence of radii
r; < Ty, T; — 0, s.t.

(2.42) H (AN B(x,r;)) > twsr] Vi €N.

(Note that the sequence r; depends on x hence r; = r;(x).) Next we apply Vitali’s covering theorem
to the Vitali covering V = {B(x,r;): © € E, i € N} of E. Therefore there exist disjoint closed balls
{Bj} C Vst

(243) HS(E \ Uij) =0.
Note that by (2.42)

tw27* Y "d(B))* <Y H(ANB;) <H(ANU) < H(E) +¢ < o0,
J J

and therefore the option (2.36) does not hold and, consequently, (2.43) follows. Hence

H(E) +e> 127w, > _d(B))* > tHj(ENU;B;) > tH3(E),
J
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where the last inequality follows from (2.43) and the subadditivity of Hj. Letting e — 0 and § — 0,
we obtain t H*(F) < H*(F) < oo. Therefore H*(E) = 0, because t > 1.
Finally we prove (b): Let ¢t > 0 and

B={rcR"\ A: 0*(A,z) > t}.

We prove that H*(B) = 0. Fix § > 0 and € > 0. We apply part (b) of Theorem 1.24 to the Borel
regular outer measure H°_A (see Lemma 1.23). Because (H°LA)(B) = 0, then by 1.24 there exists
anopen U C R" s.t. B C U and H*(ANU) < e. For every x € B there exists a radius 0 < r(z) < 0
s.t. B(z,r(x)) C U and

H¥ (AN B(z,7(2))) > tws(r(z))”.

From the basic covering theorem 2.33 it follows that there exist (countably many) disjoint balls
B; = B(x;,r(x;)) s.t. B C U;5B;. Thus

tHi0s(B) < 127w, Y d(5B;)°
= 52w, »_d(B;)’
<5° ) H(ANB)
<5"H(ANU)
< 5%.
Letting € — 0 we see that Hj,;(B) = 0, which implies further that #*(B) =0 as § — 0. O

Corollary 2.44. Let A, B C R™ be H*-measurable s.t. B C A and H*(A) < oo. Then for H®-a.e.
x € B there holds:
0" (A,x) =0™(B,z) and O5(A,x)=0;(B,x).

Proof. - - -
H5(AN B(z,7)) _ H((A\ B)N B(xz,7)) +’HS(B N B(z,r)) .

wgrs wgrs wgrs

0
L2950 Hs-ace. z€B

O

Definition 2.45. A set E C R" is m-rectifiable, m € N, if H™(FE) < oo and there exists Lipschitz
maps f;: R™ — R™ ¢ € N, such that

H™ (E \ UfiRm) =0.

Usually the finiteness of H*(F) is not required, in which case F is called countably m-rectifiable.
By the McShane-Whitney extension theorem 2.2 it is equivalent to say that

H™ (E \ UfiAi> =0,

where A; C R™ and f;: A; — R™ are Lipschitz. More importantly, by applying Rademacher’s
theorem and (a consequence of) Whitney’s extension theorem, we have
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Lemma 2.46. Let E C R" be a H™-measurable, with H™(E) < co. Then E is m-rectifiable if and
only if there exist m-dimensional C*-smooth submanifolds M; C R, i € N, such that

H™ (E\UMZ) = 0.
Definition 2.47. A set P C R" is purely m-unrectifiable if
H™(PNR)=0
for all m-rectifiable R C R™.

Remark 2.48. The set F in Example 2.31 is 1-rectifiable whereas the set J in Example 2.30 is
purely l-unrectifiable.

Theorem 2.49. Let E C R™ be H™-measurable, with H™(F) < oo (and m € N). Then there exist
H™-measurable sets P and R such that R is m-rectifiable, P is purely m-unrectifiable,

E=RUP and RNP=0.

Proof. Set M = sup{H™(R): R C E, R is m-rectifiable}. For each ¢ € N, choose an m-rectifiable
set R; such that

H™(R;) > M —1/i.
Then we can choose R = U;R; and P = E \ R. O

For m,n € N, with m < n, let G(n,m) denote the (Grassmannian) space of all m-dimensional
(vector) subspaces of R™.

Definition 2.50. We say that V' € G(n,m) is an approzimate tangent space of E C R™ at a € R™
if

0" (E,a) >0
and for all § > 0

lim Lmy.[m ({# € ENnB(a,r): dist(z —a,V) > 6|z —al}) = 0.

r—07r

If such a space exists, we denote it by T, E or T;"E.
Remark 2.51. (a) For V € G(n,m), a € R", and 6 > 0 let
Va(i; = {x e R": dist(z — a,V) > d|z — a|}.

We then notice that V' = T;"FE if and only if ©*"(FE,a) > 0 and ©*(E N Va%, a) = 0 for all
1> 6 > 0. Note that Vf = () for 6 > 1 since dist(z — a,V) < |z — al.

(b) If m = 1, the approximate tangent line T E is unique if exists, but for m > 2 T™E need
not be unique. However, for H™-measurable sets F, with H"™(E) < oo and m > 2, the
approximate tangent space T/"E is unique at H™-a.e. point a € E where such a space exists.
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(c) The definition above differs from (and is weaker than) that in [LY, 3.3.3] or [Si, 11.2] where
V € G(n, m) is said to be the approximate tangent space of an H"™-measurable subset £ C R"
(with H™(E N K) < oo for every compact K C R") at a € R™ if

lim Fly)dH™ () = /V Fy)dH™(y) Y € Co(R),

A—=0+ na,A(E)
where 1, ) : R" — R" is defined as 7, (y) = (y — a)/A for a,y € R", A > 0.
From Corollary 2.44 (see also Remark 2.51 (a)) we get:

Theorem 2.52. Let A C B C R" be H™-measurable with H™(B) < co. Then for H™-a.e. x € A,
T A exists if and only if T)"B exists. Furthermore, if exist, they are equal H™-a.e.

In particular, if E is m-rectifiable and M,’s are m-dimensional C'-submanifolds as in
Lemma 2.46, then at H™-a.e. x € E N M; the approximate tangent space of E is the same as
the usual tangent space of M;.

The following theorem characterizes rectifiable sets in terms of approximate tangent spaces; see
[Ma, Chapter 15]. (This might be discussed in the home work classes.)

Theorem 2.53. Let E C R™ be H™-measurable with H™(FE) < oo. Then E is m-rectifiable if and
only if E has the approzimate tangent space ToE € G(n,m) for H™-a.e. a € E.

As a corollary, we have a characterization of purely unrectifiability.

Lemma 2.54. Let E C R™ be H™-measurable with H™(E) < oco. Then E is purely m-unrectifiable
if and only if the set of those points a € E for which T;"E exists is of H" -measure zero.

Another deep characterization of purely unrectifiable sets is the following Besicovitch-Federer
structure theorem.

Theorem 2.55. Let Q be a countable union of sets with finite M™-measure. Then Q is purely
m-unrectifiable if and only if H™(PyQ) = 0 for almost all V € G(n,m). Here Py: R"™ — V is
the orthogonal projection and “almost all” refers to a natural probability Radon measure yp m on

G(n,m).

For the proof; see e.g. [Ma, Theorem 18.1]. Remark: There is a natural probability Radon
measure 7y, on G(n,m) that can be obtained from the general theory of Haar measures. Indeed,
the group O(n) of orthogonal linear maps R™ — R™ is compact and hence there exists a unique
invariant Radon measure (Haar measure) 6, such that 6,(O(n)) =1 and

0, (A) = 0, ({gh: h € A}) =6, ({hg: h € A})

for all A C O(n) and g € O(n). The measure 7, ,, is then obtained by fixing V' € G(n,m) and
setting

Yum(A) = 0,({g: gV € A}), AC G(n,m).

Being uniformly distributed +,, ., is independent of the choice of V.
Suppose that £ C R™ is (countably) m-rectifiable. Theorem 2.53 enables us to define the
gradient VF f of a Lipschitz function f: R® — R at H™-a.e. = € E as

m

(2.56) VEf(z) = 0 f(x)vi,

i=1
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where (v1,...,vy) is an orthonormal basis of T)"E and 0, f(x) denotes the directional derivative
of f in the direction v;. Note that we can write

E=EU| |Ej,
j=1
where H™(Ep) = 0 and E; C M;, with M, an m-dimensional C'-submanifold of R™. Then
VEf(z) = VMi f(z) whenever x € E; and f|M; is differentiable at = (which holds H™-a.e. in M,

by Rademacher’s theorem).
Having defined V¥ f(x), we can define the linear map d”f,: T"E — R by

dEfx(v) = <U,vEf(:E)>, veT"E,

at all points where T™E and V¥ f(z) exist. Above (-,-) is the standard inner product in R".
If f=(f1,...,fn): R" = R" is Lipschitz, we define a linear map d”f,: T"E — R" by

N

d” o (0) = 3 (0, V2 i (@))es,

J=1

where e1, ..., ey is the standard basis of RY. If N > m, we define the Jacobian of f, denoted by
Jf(az), for H™-a.e. x € E by

(2.57) TP(@) = \Jdet(dE fo)* o dE .

Then we have the general area formula

(2.58) [;ﬁﬂﬂmziéNH%Aﬂf‘Wwﬁﬂﬁ%w

for every H""-measurable A C E. Similarly, in the case N < m, we can define

TF (@) = \[det(dB £,) o (dE )"

and obtain the general co-area formula
[ TE@arn@) = [ N an )i )

for every H™-measurable set. The following theorem will be useful in studying ”slices” of currents.
Theorem 2.59. Let E C R" be m-rectifiable and f: R™ — R Lipschitz. Then for mi-a.e. t € R,
(1) Ey .= f~Y(t) N E is (m — 1)-rectifiable and
(2) for H™ l-a.e. x € E;, tangent spaces T *E; and TME exist, "' C T"E, and

TME = {y + \VEf(z):y € T 'E;, A €R}.

(8) For every nonnegative H™-measurable g: E — R, we have (the co-area formula)

/ﬁ /‘gdﬂm_ﬂﬁ:i/\VEfdem.
—oo J Ey E
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For the proof; see [Si, p. 68-69 and 28.1]. Here we just sketch the proof:
The finiteness of H™ ' E; for a.e. t € R follows from Lemma 2.25 (iv). We can write

o0
E:%uU@,
j=1

where H™(Ep) = 0 and E; C M,, with M, an m-dimensional C'-submanifold of R™. Then
H™ Y (Eon f7(t)) = 0 for a.e. t € R. Hence it is enough to prove the claims for E = M,
where M is an m-dimensional C'-submanifold of R™, with H™(M) < oo. Applying the implicit
function theorem (and using local coordinates), we may assume that M C R™, with m,,(M) < oo.
Rademacher’s theorem and Whitney extension theorem imply that, for every € > 0, there exists
ge € C such that

mm ({z € M: f(z) # ge(x) or Vf(x) # Vge(x)}) <e.

Applying this with ¢ = 1/i, i € N, the problems are reduced to the case f € C!. Sard’s theorem
implies that

m1 ({f(z): [Vf(x)] =0}) = 0.

Thus we may assume that Vf(z) # 0 for every x € M. Now the implicit function theorem implies
that the level sets My = {x € M: f(x) =t} are locally (m — 1)-dimensional C'! submanifolds, hence
(m — 1)-rectifiable. This proves (1). The claim (2) follows from the facts that VM f(z) € /M
and VM f(z) L T™~'M;. Finally, (3) is a generalization of the co-area formula.

3 Varifolds

From Wikipedia: Varifolds were first introduced by L.C. Young in 1951, under the name ”gen-
eralized surfaces”. Frederick Almgren slightly modified the definition in his mimeographed notes
(Almgren 1965) and coined the name varifold: he wanted to emphasize that these objects are sub-
stitutes for ordinary manifolds in problems of the calculus of variations. The modern approach to
the theory was based on Almgren’s notes and laid down by William Allard (Allard 1972).

Varifolds can be interpreted as measure-theoretic generalizations of smooth manifolds and they
generalize the idea of rectifiable currents.

3.1 Basic definitions
We start with introducing a metric (and hence a topology) on the Grassmannian space
G(n,m) ={V C R": V m-dimensional subspace of R"}.
For V,W € G(n,m), define
d(V,W) =[Py — Pw|| = sup{|Pvz — Pwz|: z € R", [z| =1},

where Py : R™ — V is the orthogonal projection onto V. With this metric G(n,m) is a compact
metric space.

Definition 3.2. Let U C R™ be open and 0 < m < n integers. A Radon (outer) measure on
U x G(n,m) is called an m-dimensional varifold (or m-varifold) in U. The set of m-dimensional
varifolds in U is denoted by V,,,(U).
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Hence

Vi (U) = {V: V a Radon outer measure on U x G(n,m)}
= {p: p Borel regular outer measure on U x G(n,m),
w(K x G(n,m)) < oo ¥ compact K C U}.

We equip V;,,(U) with the weak topology (the following is just the rephrase of Definition 1.65 for
Radon outer measures):

Definition 3.3. The sequence V; € V,,,(U) is said to converge to V' € V,,,(U) (as varifolds), denoted
by V; = V, if V; = V as Radon (outer) measures, i.e.

/ fav; — fdv Vf e Co(U x G(n,m)).
UxG(n,m) UxG(n,m)

Definition 3.4. For each V € V,,(U) we define the measure ||V and its m-dimensional density
d(V,-) in U by setting

[VII(A) = V(A x G(n,m)) for Borel sets A C U,
IVI(Ba,)

Wy, ™
d(V,a) = lir% d(V,a,r) for a € U if the limit exists.
r—

d(V,a,r) , 7 >0,

The measure ||V|| is also called the weight (measure) of V' and denoted by py. The mass of V is
defined as My = ||V||(U).

We abbreviate
Gn,m(U) =U x G(nam)y Gn,m = Gn,m(Rn)

Example 3.5. Let £ C R™ be an H"*-measurable m-rectifiable set. Then E has the approximate
tangent space T)"E € G(n,m) for H™-a.e. x € E. Define

Vi(A) = H"({z € E: (2, T]'E) € A})

for A C Gy, . Then Vg is an m-varifold, ||Vg|| = H™LE, and My,, = H™(FE). Moreover,
| twve= [ ferre e
Gn,m E

for all f € Co(Gr,m).

Definition 3.6. Let £ and E be H™-measurable and (countably) m-rectifiable subsets of R", and
let & (resp. 0) be nonnegative and locally H™-integrable in E (resp. FE). We say that (£,) and
(E,0) are equivalent if

H"((E\E)U(E\E)) =0

and 0 = 0 H-a.e. in ENE. A (countably) rectifiable m-varifold Viee =V (E,0) is the equivalence
class of a pair (F,0) as above and (F,0) is called a representative for V. If 6 is integer valued,
V(E,0) is called an integer multiplicity rectifiable m-varifold, or briefly an integer m-varifold.
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We adopt the convention that § = 0 in R™\ E. Associated to a rectifiable m-varifold V =V (E, 0)
there is a Radon measure py, called the weight measure of V', defined by

(3.7) py =H™0,

that is
v (A) = / 6 dH™
ANE

for H™-measurable sets A. The mass of V =V (E,0) is
My = iy (R") = / 0 dH™ = (H™.0)(R™).
ENR®
Every countably rectifiable m-varifold V (£, #) induces an m-varifold Vg ¢ by

Veo(A) = / OdH™(x), A€ Gpm.-
{z€E: (z,TI"E)eA}

3.8 First and second variation formulae

Next we will study how the mass My of an m-varifold V' € V,,,(U) (resp. of a rectifiable m-varifold
V = (E,6)) behaves under a perturbation by a l-parameter family of diffecomorphisms. To get
an idea, let us consider first (a less abstract setting of) an m-dimensional C''-smooth submanifold
M Cc R™

Remark 3.9. Let M be an m-dimensional C''-smooth submanifold of R™. For every point z € M
there exist an open neighborhood A C R" of x and a C'-diffeomorphism ¢: A — A’ onto an
open set A C R™ such that (A N M) is an open subset of R™ x {0} € R™ x R"™"™. Note that
T, M = (dp,) 'R™.

Let then U C R" be open such that UNM # () and H™(C' N M) < oo for every compact C C U.
Let {¢¢}, —1 <t < 1, be a l-parameter family of diffeomorphisms ¢;: U — U such that

qb: (_17 1) xU — Ua qb(t,x) = ¢t(x)7 is 027
(3.10) ¢o(x) =x Vo € U, and
G(x) =xVereU\ Kandte (—1,1),

for some compact K C U. Define mappings X = (X',...,X"): U — R" and Z =
(ZY,...,Z2™): U — R"™ by

x 2o(t, x
(3.11) X(z) = aqsget, )t:0 and Z(x)= %“:0.
Then
(3.12) de(z) =z +tX () + gZ(x) + O(t?),

where O(t3) € R", with |O(¢?)| < ¢|t|*. Since ¢¢(z) = = for x € U \ K, the maps X and Z are
compactly supported.
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Definition 3.13. Let M; = ¢;(M N K). The first and second variations of M (with respect to a
1-parameter family {¢;}) are defined as
d

EH (Mi)4=o and @H (M¢) =0,

respectively.

By the area formula

H™ (M) = H™ (¢ (M N K)) = / Ty dH™,

MNK
where ¢y = ¢|/M NU. Since we can change the order of integration and differentiation, the
computation of the first and second variations reduces to calculating
0 H?

&det:(] and @Jll}ﬂt:(]'

For that purpose, let us fix orthonormal bases ,...,7,, of T, M for x € M and eq,...,e, of R™.
We define the (induced) linear map di); ,: T, M — R™ of ¢ at x € M by

dwt,x(T) = aTqbt(;U) = 8T¢t($)7 TeTl, M.

By (3.12), we have
2

(1) = 7 + 10, X(2) + 50:Z(2) + O(F).
Writing the basis vectors 7, j =1,...,m, as
n
Tj = Z T;Gi,
i=1
we can express the matrix (a;j)nxm of diy, w.r.t. bases 11,..., 7, of T, M, x € M, and eq,...,e,
of R™ as

. N :
aij =7 + 105, X' + S0, 7' + O(t).

Consequently, the matrix of (di)yz)* o (di)rz) is (bij)mxm, Where
bij = Z ki Gk
k=1

1
= (52']' +1 (<TZ’,87—J-X> + <Tj,8ﬂ.X>) +t2 <§ (<TZ’,87—J-Z> + <Tj,aﬂ-Z>) + (E?Tl.X, E?TJX>> + O(tg).

Next we apply the formula
det (I +tA+t>B) = explogdet (I + tA + t*B)
=expTr (log (I +tA+ tzB))

1
= expTr <tA +t°B — 5 (tA+ t?B)? + O(t3)>
— exp (t TrA+t*TrB — % Tr (£?A% + 2t°AB +t*B?) + O(t3)>
1
= exp <t TrA+t*Tr B — §t2 Tr A% + O(t3)>

1 1
=1+tTr A+t*Tr B — 5:52 Tr A% + §t2(TrA)2 +O(t?)
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for symmetric square matrices I = (J;;) = the identity matrix, A = (A4;;), and B = (B;;), where

Ajj = (73, 0r; X) + (75,0, X) = Aji and
1
Bij = 5 (<Ti,aTjZ> + (Tj,ﬁnZ>) + <8TiX, OTJ.X>,

to obtain

T2, () = det(diye)* o (dy,0) = det(byy)

m m m 2
=1+ 2t (7,0, X) + 2> <<n, 0. 7) + |8TiX|2> + 2?2 (ZW 8TiX>>
=1 =1

1=1

R 2
=5t D0 (7.0, X) + (13, 0-, X)) + O(t")

i,j=1

=1+ 2tdivy X +2divyy Z+ 7> [0, X% + 267 (divay X)?
=1

— 2> (73,0, X)2 =12 (73,05, X)(1, 0, X) + O(t%)

1,j=1 1,j=1

=1+ 2tdivyy X + 2 (divM Z+2(divy X)? + 3 ‘(anx)ﬂz 3 (7,0, X) (1, aﬂX>)
=1

i,j=1

+0(t%),

where
m

(0,X)" =0, X = > (15,0, X)7

=1

is the normal component of 9, X (normal to M). Above divys X is the divergence of X (at x € M)
with respect to M defined as

divas X =) (7,07, X).
i=1
Finally, using

1 1
Vits=1+-s—=5>+0(s%),

2”8
we get

. t2 . . 2 = 112 =
Jun(@) = 1+ tdiva X + 5 (de Z + 2 (divy X)% + Z; ((anx) ‘ - 'Zlm, 0, X) (1, 871X>)

1= ,)=
t2
- §(2 divy X)? + O(%)
. 752 . . 2 “ 112 “
=1+tdivy X + 5 (de Z 4 (divy X)? + ; ‘(&iX) ‘ — ijzl<n,aTJX><Tj,aﬁX>)

+ O(t?).
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Hence 9
EJM%H:O = diVM X,
and therefore, by the area formula, we obtain the first variation formula
d 0
. m M = . _ m
dtH ( t)‘t—() /MﬂK ot Jwt‘t—o dH
(3.14) _ / divys X dH™
MNK
= / divy X dH™,
M

where the last equality holds since X =0 in M \ K. Similarly, we get the second variation formula

d2
gz " (M=o
(3.15) _ / (divar Z + (divar X)2 + 3210, X) [ = 37 (70,00, X) (73,0, X) ) d™
M i=1 t,j=1

Definition 3.16. An m-dimensional C''-smooth submanifold M C R" is stationary in an open set
UcCR"it H"(M NC) < oo for every compact C C U and if

d ym
gt (Me)j=0 =0

for M; = ¢¢(M N K) whenever ¢, and K are as in (3.10).

By the first variation formula (3.14), M is stationary in U if and only if
/ divyy X dH™ =0
M

for every C'-smooth X: U — R™ with compact support in U. Indeed, every such X generates a
I-parameter family of C?-diffeomorphisms {¢;} satisfying (3.10), with K = supp X, as the flow of
X. More precisely, for every z € U, t — ¢(x) is the integral curve of X starting at z, that is
¢o(r) = x and

d

Remark 3.17. If M is an m-dimensional C?-smooth submanifold of R", m < n, and U C R" is
open such that U N M is compact, then M is stationary in U if and only if H =0 in M NU, where
H is the mean curvature vector of M. The mean curvature of M will be discussed in a home work
session.

Next we will generalize the first variation formula for rectifiable m-varifolds. Let V = V(E, 0)
be a rectifiable m-varifold in an open set U C R™. We suppose for simplicity that
(3.18) O(x) >1
for H™-a.e. x € E. This restriction is made to avoid discussions on approximate tangent spaces

(and hence Jacobians) with respect to multiplicity §. We conclude from Theorem 2.52 that T;*F
and T)"E exists and are equal for H™-a.e. © € ENE if (E,#) is another representative for V.
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Therefore we can define the approximate tangent space of V' at x by setting 7,,V = T,"E. Suppose
then that f: U — U’ is a Lipschitz mapping to an open set U’ C RN, N > n, with the Jacobian
J]’? defined in (2.57). We notice that Jf(m) = Jf(az) for H™-a.e. x € EN E, and hence we may

denote it by J}/. By the general area formula (2.58), we have

(3.19) / g TE anm = / S gy dur = / ( / gHO) dHm
A fE FTE \YANf~1(y)

z€ANF—1(y)

for every nonnegative H™-measurable g on F and H™-measurable A C E. Clearly fFE is an m-
rectifiable subset of U’. We assume, moreover, that f: U — U’ is proper, that is f~'K C U is
compact for every compact K C U’. Then we define 6’ on U’ by setting

Oy)= > e(m):/Ef ()Hd’HO
Nnf1(y

zeENf—1

and the image (or push-forward)
f+V =V(fE,0").

/H’d”H’”:/ O’d”Hm:/ 0.JF dH™
K fENK Enf-1K

for every compact K C U’, we see that 6’ is locally H™-integrable in U’. Hence f4V is a rectifiable
m-varifold in U’ with multiplicity §’. Moreover,

Since

Mf#vz/ H’de:/ JF0dH™.
fE E

Now we are ready to define the first variation of V. Let {¢:} be a 1-parameter family of diffeomor-
phisms ¢¢: U — U as in (3.10). We denote VLK = V(E N K,0|K), where K C U is the compact
set in (3.10). Then

My, , (VoK) = / J50dH™
ENK
and we can compute the first variation

d
7t Mo (Vi) =0

exactly as in the case of C''-submanifolds and obtain

d

(3.20) 2t Mou4 (VK t=0 = /E diveg X duy,

where X is as in (3.11) and divg X is the divergence of X with respect to E, defined as

m

divg X(a;) = Z(Tia aTlX(‘T»?

i=1

with 71,..., 7, an orthonormal bases of T"F.
As in the case of C'-submanifolds, we define
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Definition 3.21. A rectifiable m-varifold V = V(E, 0) is stationary in an open set U C R™ if
/ divg X duy =0
E

for any C'-smooth X : U — R™ with compact support in U.
We also generalize the notion of mean curvature as follows:

Definition 3.22. Let V = V(FE,#) be a rectifiable m-varifold in an open set U C R™. Suppose
H: ENU — R" is locally py-integrable. We say that V' = V(E, 0) has generalized mean curvature
H in U if
/ divg X duy = —/ (X, H)dpy
U U

whenever X : U — R" is a C! with compact support in U.

Hence a rectifiable m-varifold V' = V(E, 0) is stationary in an open set U C R"™ if and only if it
has zero generalized mean curvature in U.

Next we will introduce the variation of a (general) varifold. For that purpose, let U, U’ C R" be
open, V € V,,(U) an m-varifold in U, and suppose that f: U — U’ is a C'-diffeomorphism. Recall
that an m-varifold in an open set U C R" is a Radon (outer) measure on Gy, ,,(U) = U x G(n,m).
First we define the push forward of V' under f by setting for Borel sets B C Gy, m (U’)

PV @)= [yt D)V (),

where F': Gy (U) = Gy (U’) is defined by

F(x7E) = (f(x)vdfxE)

and
Jp(2, B) = (det(df,|E)" o (df.|E))"*, (2, E) € Gom(U).

Note that df,: R® — R” is an invertible linear map for all # € U since f: U — U’ is a C'-
diffeomorphism. In particular, df,|E: E — df,E € G(n,m) is invertible. For a Borel set A C U,
the restriction VLG), (A) is the Radon measure in Gy, ,(U) defined as

(VLG (A))(B) = V(BN Gpm(A)), BC Gum(U).

Definition 3.23. Let V be an m-varifold in an open set U € R™ and let C&(U, R") be the space of
C'-mappings X : U — R™ with compact support in U. Then the first variation of V is the linear
functional 6V': C}(U,R") — R,

d
(5V(X) = EM(bt# (VLGn,m(K))|t=0>

where {¢:} is a 1-parameter family of diffeomorphisms U — U associated to X € C}(U,R") as in
(3.10) and (3.11), that is ¢ = ¢(-,) is the flow of X.

Again, exactly the same computation as in smooth case gives

(3.24) SV(X) = / divs X (z) dV (, S),
Gn,m(U)
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where, for any (z,5) € G, m)(U), divs X is the divergence of X with respect to S, defined as

m

divg X(z) = Z(Ti, Or, X (7)),

i=1
with 71,..., 7, an orthonormal bases of S.

Definition 3.25. A varifold V' € V,,(U) is said to be stationary if 6V (X) = 0 for every X €
C3(U,R™).

More generally, V' is said to have locally bounded first variation if for each W & U there exists
a constant ¢ < oo such that

16V (X)| < esup|X| VX € CHU,R™), with supp X C W.
U

Definition 3.26. For any V € V,,,(U), we define the set function [|[6V]|: P(U) — [0, o] by
|6V |[(U") = sup{6V(X): X € CH(U,R™),|X| < 1,supp X C U’}
for open sets U’ C U, and then
|6V ]|(A) = inf{||6V||(U"): U' C U open, A C U’}
for ACU.

We note that [[6V]| is a metric outer measure. If V' has locally bounded first variation, then
|0V]| is a Radon measure by Theorem 1.31 and, moreover, by the general Riesz representation
theorem 1.34, there exists a |6V ||-measurable mapping 1y : U — S*~! such that

(3.27) SV (X) = — /U (X, ) |6V |

for all X € C}(U,R™). [Use the Hahn-Banach theorem to extend §V : C3(U,R™) to a linear func-
tional on Cp(U,R™) and remember the construction of the Radon measure x4 in the proof of the
Riesz representation theorem to note that p is, in fact, |[|[6V]].]

Recall that the weight (measure) py = ||V|| is defined as

pv (A) = V(A x G(n,m))

for all Borel sets A C U. By the Radon-Nikodym theorem (see e.g. [Ma, 2.17], [Si, 4.7], or [Ho,
5.31]), the Radon-Nikodym derivative

Dy 6V [(z) = }13%) %

exists for py-a.e. x € U and
[ exmydiovi = [ o) du + [ (o) do
U U U
where o = ||0V[|LN, N ={x € U: D, ||dV|(z) = oo}, and

Hy (x) = Dyy [0V [(z)nv (2).
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Hence we can write (3.27) as
SV(X) = / divg X (z) dV (z, S)
Gn,m(U)
:—/<X7Hv>duv—/(Xﬂ]v>dU
U U
:—/<X7Hv>d/w—/ (X, nv) do.
U N

We call Hy the generalized mean curvature of V., N the generalized boundary of V', o the generalized
boundary measure of V| and ny|N the generalized unit co-normal of V.

Remark 3.28. If M C R” is a C?-smooth m-dimensional submanifold with smooth boundary OM
and X € CY(U,R"), with M C U, U C R" open, then

/ divy X dH™ = — / (X, HYdH™ — / (X, n)dH™ 1,
M M oM

where H is the mean curvature (vector) of M and 7 the inward pointing unit co-normal of OM,
that is, |n| = 1, n is normal to M, tangential to M, and points inwards to M.

The first variation formula is applied with certain specific choices of the vector field X. Most
importantly, we obtain the so-called monotonicity formula and its applications to the regularity
theory of varifolds. These will be discussed in a series of presentations in home work sessions. If
the time permits, we will return to these topics in context of currents.

4 Currents

In this Section we introduce and study some basic notions in the theory of currents which (like
varifolds and m-rectifiable varifolds) are kind of generalized surfaces.
Let us start with the following motivating example.

Example 4.1. Let M be a smooth oriented m-dimensional submanifold of R”. We can integrate
smooth differential m-forms « (with compact support) over M and thus consider M as a linear
functional

[M]: {smooth differential m-forms with compact support} — R,

[M](a) = /M a.

Currents are, by definition, such continuous linear functionals on the space of smooth differential
m-forms with compact support; see Definition 4.21.

4.2 m-vectors

In this subsection, we discuss briefly about m-vectors which are kind of ”products” of vectors.
Given v1,v9 € R", a geometric interpretation of the 2-vector vy A vs is the oriented parallelogram
spanned by vectors vy and vs.
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If v1 = Avo, the parallelogram is degenerate, and we have v; A v9 = 0.
Similarly, for a 3-vector vy A v9 A vg can be interpreted as an oriented parallelepiped spanned
by vectors v, v9,v3 € R™.

v1 N\ v2 A\ vs

Formally, the quickest (but not necessarily the most elegant) way to define the vector space of
m-vectors

/\m(R"), m=20,...,n,
is as the space of all (real) linear combinations

E Ajyeviipy €iy N N €4y
1<i1 < <tm<n cR

where (eq,...,e,) is the standard (ordered) basis of R™. The basis (m-)vectors e;; A --- A e, ,
1< < <im<n,of A\, (R") can be defined as the strictly increasing sequences i3 < -+ < ip,.
Thus we may identify e;; A --- Ae;,, with the m-tuple (i1,...,4y) if i1 < --- < iy,. Hence

dim /\ (R") = (;)

If m=mn, e A---Ae, is the only basis vector, and therefore
dim /\ n(R") = 1.
Hence we may identify
A\n@®R") =R.
Similarly,
/\ 1(R™) = span(ey,...,e,) = R".
We also define
/\O(Rn) =R and /\k(Rn) = {0} for k > n.

We want to "multiply” k-vectors and m-vectors and hence to give e;; A--- Ae;,, a meaning as a
"product” of vectors e;,,...,e; . Since the desired properties of the wedge product (or exterior

product) P\ (R™) x A, (R") = Agp,, (R") are



48 Geometric Measure Theory

(a) multilinearity:
(au+bv) A cw = ac(u Aw) + be(v Aw), a,b,c €R, u,v € /\k(]R”), w e /\m(Rn);
au A (bv + cw) = ab(u Av) + ac(u Aw), a,b,c eR, u € /\k(Rn), v, W € /\m(R”),
(b) associativity:
uAN(vAw)=(uAv)Aw, and
(¢c) anticommutativity:

uhv=(-D)*"wAu wue /\k(Rn), vE /\m(Rn)a

it is enough to define wedge products
€y Nejg N+~ Neg,, Nej = (eil /\€i2/\"'/\€im)/\€j

forl <iy <---<ipmandje{l,...,n}. Wehave already defined e;Ae; € Ay(R")for1 <i<j<n
(as the oriented pair (4, j) or the positively oriented unit square in R" spanned by e; and e;). We
define

ejNe;=—e;Ne; for i < j,

and
e; N\Nep = 0.

We also have defined already e; AejAey if i < j <k, i.e. the positively oriented unit cube spanned
by e;, e, ey (or the oriented 3-tuple (7,7,k)). So, we define for i < j < k

ei Nep Nej =e; N (e Nej)
=e; N (—e; Ne)
= —e; Nej Neg,
ex NejNej = —e; Nep Nej)
=—(—eiNejNeg)
=e; Nej e,

and so on. Also e; Ae; Aep, =0if i =jori =k, or j = k. Continuing this way we have the
wedge product u Av € A, (R?) for u € A\, (R") and v € A, (R"). If k+m >n, uAv =0 and
Nism(R™) = {0}. Let us summarize the discussion above:

Proposition 4.3. The wedge product has the properties:
(a) multilinearity:
(4.4) (au~+ bv) A cw = ac(u A w) + be(v A w)
fora,b,c € R, u,v e \L(R"), we A\,,(R"),
(b) associativity:
(4.5) uN(vAw)=(uAv)Aw,

and
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(c) anticommutativity:

(4.6) uAv=(—1)""vAu
for € A®Y), v e A (BY).
Since the m-vectors e;; A---Ae;, 1 <ip < -+ < iy <mn, form a basis of A\ ,,(R"), we may

equip A ., (R™) with an inner product (-,-) such that these m-vectors form an orthonormal basis.
More precisely, denote

Nm) = {(i1, ... im) €EN": 1< iy <-ov <y <}
and e =e;; A--- Aej, for I = (i1,...,im) € A(n,m). Then
(4.7) < Z arer, Z bJ€J> = Z a]b].
IeA(n,m) JeN(n,m) IeA\(n,m)

In fact, identifying A,,(R"™) and R(m) isomorphically, i.e. by identifying the basis vectors ey, I €
A(n,m), with the standard basis vectors of R(:m), the inner product in (4.7) becomes the standard

inner product in R().
We define the norm

(4.8) vl = V/{v,v)

for v e A,,(R"™). If v is a simple m-vector, that is
V=V1 N\ N\NUnp

for some vectors vy, ..., v, € R™, then

(4.9) [v| = v A Ao

is the (m-dimensional) volume of the parallelepiped spanned by vy, ..., v,,. In particular,
[t A-- Avpy| =0

if and only if vy, ..., v, are linearly dependent.

4.10 m-covectors

Let A'(R™) denote the dual of R” (thus A'(R™) = (R™)*) and let dz!,... dz™ denote the dual

basis of e1,...,e,. That is,
' ' 1 ifi— i
do'(ej) = dh =4
0, ifi#j.

Then we define the vector space

(4.11) AR = Aw(/\'(RY)

as above by replacing e; with dz’. The elements

(4.12) o= Z iy AT N -+ A da'™ = Z ardx’

11 <<l IeA\(n,m)
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of A™(R™) are called m-covectors. The space A" (R™) has the induced) inner product

< Z afdazl, Z de(L'J> = Z a]b[
)

Ie\(n,m) JeA(n,m Ie \(n,m)

such that the m-covectors dz™* A --- Adz'™, 1 < iy < --- < 4, < n, form an orthonormal
basis. Moreover, A™(R") is the dual vector space of A, (R"). Again we have A'(R") = R =
A" (R™), AHR") =R, and A™(R") = {0} if m > n.

4.13 m-~vector fields, m-covector fields, and smooth differential m-forms

Definition 4.14. If U C R", the mappings U — A, (R"),

x> Z ar(z)er,

and U — A\"(R™),

are called m-vector fields and m-covector fields in U, respectively.

Definition 4.15. The mappings U — A" (R"),

Ty

Ie A\ (n,m)
are also called (differential) m-forms in U.

If U € R™ is open and
a= oy (z)dz?,
Ie\(n,m)

where the functions aj are C'°°-smooth, we say that « is a C°°-smooth differential m-form in U.
The space of all C*°-smooth differential m-forms in U will be denoted by A™(U).

Since A\’(R") = R, we have A%(U) = C®(U,R). If f: U — R is C®, ie. f € AYU), its
differential df: U — A'(R™) is a C*-smooth differential 1-form such that at a point z € U,
df (z): R™ — R is the linear mapping defined by

df(2)o = (Vf(2),v), veR"
Since, on the other hand,

n

da' (v) = dx’ Zvjej = v;
j=1

and hence

(@) = (Vf(@).0) = <_§j ag;>>
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we notice that

(4.16) df = Z axl

Moreover, dz’ is the differential of the i coordinate function z — ;.

o= Z oqul

Ie A\ (n,m)

Definition 4.17. Let

be a C*°-smooth differential m-form. The exterior derivative of a is the (m + 1)-form

do= Y dandal = Y Zazfd Adal.

IeA\(n,m) Ie\(n,m) =1

In particular, df is the exterior derivative of a O-form f.

Using the facts that
(92041 N 82a1

axiaxj N 83;]8951

and ' ' ' '
dx* Ndr? = —dx? A dx’,

we obtain

d?a = d(da) =

Definition 4.18. Let U € R” and V C R? be open sets and f = (f',..., f4): U — V a C™-smooth
mapping. The pull-back of a differential m-form « in V,

o= Z ail...imdxil Ao A dmim,
1<i) <+ <im <d
is the differential m-form f*« in U defined by
fra= > (i, 0 )df A Adf™,
1<i1 <+ <ipn <d

where

df? = Z af

=1 Li

Notice that we do not require o being smooth. The pull-back and the exterior derivative
commute, that is

(4.19) ffda) =df*a

for smooth a.
Let D™(U) C A™(U) denote the space of all C*°-smooth differential m-forms in U with compact

support, that is, if
o= Z ardz’,
I
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then each ay is C*°-smooth and there exists a compact set K C U such that supp ay C K for every I.
We endow D™ (U) with the locally convex topology by saying that a sequence o € D™(U), k € N,

of = E okda!
I

converges to
a= Z arde’ € D™(U)
I

if there exists a compact set K C U such that

supp o := Usupp a'f CK Vk
I

and
8‘J|a’f 8‘J|a1

oz’ Oz’
uniformly as k — oo for every multi-index J =41 - - - ip.

4.20 m-~currents; definition and basic notions

Definition 4.21. An m-current in an open set U C R" is a continuous (w.r.t. the locally convex
topology described above) linear functional

T: D™(U) — R.
The space of m-currents in U is denoted by D,,(U).

Definition 4.22. The boundary of an m-current T € D,,(U) is the (m—1)-current 9T € D,,_1(U)
defined by
0T (w) = T (dw)
for all w € D™~Y(U). Since d? = 0, we have 9*T = 9(0T) = 0.
Example 4.23. Let M C R" be a smooth oriented m-dimensional submanifold with smooth

boundary OM. Let U C R"™ be an open set such that M U9M C U. Then M and OM define
currents

[M] € Dy (U): [M](w) = /M W, we DU,
[OM] € D,,,_1(U): [OM](a) = /8 oo e D" HU).
By Stokes’ theorem

OM](0) = /8 o= /M do = [M](da)
for all « € D™~L(U). Hence [M] = [0M].

Remark 4.24. For the definitions of the integrals

/ da and / «
M oM

we refer to literature on differential geometry (e.g. [Lee], [Ho2]). However, since we will later
integrate differential m-forms over ”oriented” m-rectifiable sets, we will explain below the meaning
of [ ) W even in this more general setting.
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Let V € G(n,m) and let L: R™ — V be a linear isometric isomorphism (the restriction to R™
of an orthogonal mapping O: R" — R™). Now

/\m(V) = {Z @iy i Vig N\ - N Vi, 0 g5 € V}
={A(Ley) A+ A (Lep): X € R}

is 1-dimensional. Hence, if v € A, (V'), with |v| = 1, then the only other w € A, (V), with |w| = 1,
is w = —v. Let T, M be the tangent space of M at x (here, first, M is an oriented m-dimensional
smooth submanifold of R™). Then M being ”oriented” means that we have chosen, for every x € M,
an m-vector M(z) € N, (T M) such that |M(z)| =1 and 2 — M(x) € G(n,m) is continuous. We
then define

/ W= / (W (2), () dH™ ().
M M
Here (M (z),w(z)) = w(M(a:))(x) € R is the "dual pairing”. In the general case, M will be

m-rectifiable, 77" M the approximate tangent space of M, and M will be replaced by a ”Borel
orientation”.

Example 4.25. 1. m =0: For a € R", let [a] = d, € Do(R"),
[al(¢) = p(a), »€DR").

2. m = 1: Let I C R" be a Cl-curve, f(x) the unit tangent vector to I' such that = — f(x) is
continuous. Then

M) = [ @@ @), ©eD'®).
r
3. m =n: Let U C R" be open with smooth boundary OU. Then

U](w) = /U<e1 Moo A enw(@))dma(z), w e DU(RM).

4. Let Q =[0,1] x [0,1] and let T' € D;(R?) be defined as
T(w) = / (e1,w(x))dma(z), w e DYR?).
Q
Writing w = widz! + wadz?, we see that

T(w) = [ (ex,w(x))dmy(z)

wy (e1, dzt) dmo(z) + / ws (e1, dz?) dms(x)
=1 9 =0

widma(z).

I
S~ S~
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On the other, T € Dy(R?), so it operates on smooth functions (0-forms) as

Op . 1 0Op
T(p) =T(dp) =T [ — -
OT(¢) = T(dy) (axldfﬂ + 22
:/ 92 1ms
anl

1 1 8(,0
—/0 /0 8—$1d(£1d(£2
1
_/ (p(1,22) — ¢(0,29)) dz2

0
/ 2 _/ 2
I Io

where Iy and I; are the line segments Iy = [(0, 0), (0, 1)], I, =

T = H' I, — H' I,.

—)—//— Q
+
aT A
% or
IO / Il

dm2>

[(1,0),(1,1)]. So,

Notice that T is a 1-dimensional current but its ”support” is 2-dimensional.

Definition 4.26. We define the mass of T' € D,,,(U) by
(4.27)

If W C U is open, we define

M(T) = sup{T(w): w € D™(U), |w(x)| < 1Vx € U}.

My (T) = sup{T'(w): w € D"(U),|w(z)| <1 Vx € W, suppw C W}.

Remark 4.28. (a) There is another slightly different definition
define the co-mass of an m-covector n € A\™(R™) by

Inll = sup{(¢,m: (| < 1, ¢ € \m(R")

and then
M(T) = sup{T'(w): w € D"(U), [lw(z)| <

Since [|w(z)]] < |w(z)], it is possible that M (T") > M(T).

of the mass: Indeed, one first

simple}

1VzeU}.

(b) Suppose that L: D™(U) — R is a linear map that is continuous with respect to the norm

topology of D™(U), that is L(w;) — L(w) if w;,w € D™(U),

with |w; — w| — 0. Since the

convergence in the locally convex topology of D™ (U) implies the convergence in the norm
topology, we notice that L is continuous with respect to the locally convex topology, too.
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Hence L € D, (U). On the other hand, since the norm topology of D™(U) is coarser than
the locally convex topology, there can be m-currents with infinite mass. In other words, each
m-current T' € D,,(U) is a linear mapping T : D,,,(U) — R that is continuous with respect to
the locally convex topology but not necessarily with respect to the norm topology of D™ (U).

(c) Since (D™(U),|-|) is a normed space, its dual space {T' € D,,(U): M(T) < oo} is a Banach
space.

Applying the Hahn-Banach theorem and the Riesz representation theorem we obtain the fol-
lowing;:

Theorem 4.29. Suppose that T' € D,,(U) such that My (T) < oo for every W € U. Then there
exists a Radon measure pur on R™ and a pr-measurable mapping T: R™ — A, (R™) such that

|T(2)| =1 for pr-a.e. z € R"™ and

T(w) = /(T(x),w(x»du;p(x) Yw € D™(U).
The total variation measure ur associated to T" is characterized by
pr(W) = sup{T'(w): w € D"(U), |w| <1, suppw C W} = My (T)
for every open W C U. In particular,
pr(U) = pr(R™) = M(T).

Definition 4.30 (Restrictions of currents). If T' € D,,,(U), M(T) < oo, and A C R™ is Borel, then
the restriction of T to A is the m-current T A € D,,(U),

(TLA)(w) = /A (F(a),w(@))dur(z), w e DU,

where T and pr are as in Theorem 4.29. Similarly, if ¢ is a pp-integrable function, we define
Tvrg € Dy, (U), the interior multiplication by g, by

(Teg)(w) = /g(w)<f(w)7W(w)>dﬂT(w)7 w e D™(U).
Definition 4.31. The support of T' € D,,(U) is the set
suppT =U \ U{V: V C R" open, T(w)=0VYw e D™(U), suppw C V}.

If M(T') < oo, and hence pr exists, then supp7 = U N supp pr. Recall that the support of the
measure pr is the set

supp pr = R™ \ U{V: V C R" open, ur(V) = 0}.
Definition 4.32. Let T;,T7 € D,,(U). We say that the sequence T; converges to 1" and write
T —T
if
lim T} (w) = T'(w)

1—00

for every w € D™(U). Hence, in fact, T; T,
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Proposition 4.33. Suppose T; — T'. Then
oT; — 0T and M(T) < liminf M(T;).

1—»00

Remark 4.34. The lower semicontinuity of the mass is very important and useful property in
mass minimizing problem.

Remark 4.35. We notice that the normed space (D"(U),| - |) is separable, and hence the closed
unit ball of its dual {T" € D,,(U): M(T) < oo} is sequentially compact in the weak* topology by
the (sequential) Banach-Anaoglu theorem.

By applying the (sequential) Banach-Alaoglu theorem for the Banach space {1 €
Dy (U): M(T') < oo} we obtain the following:

Theorem 4.36. Let T; € D,,,(U) with

sup M(T;) < oo.

(2

Then there exist a subsequence T;, and T' € Dy, (U) such that
Tij —T.

Next we define the cartesian product of currents T; € Dy, (U;), U; C R™ open, i = 1,2. Any
differential (my 4+ me)-form w in U; x Uy can be written in the form

w(z,y) = Z wrydx’ A dy?, (z,y) € Uy x Us.

(I,J) € A(n1,mi) x A(n2,ms)
mj+mbH=mi+msz

Then we define:

Definition 4.37. Let T; € D,,(U;), U; C R™ open, i = 1,2. The cartesian product 71 x Th €
Diny+my (Ur x Us) is defined by

(Ty x Th)(w) =T} Y > widy’ | da’
ITeA(n1,m1) JEA(n2,m2)

for w € D™ (U x Us).

Notice that T} x T ignores the terms dz! Ady”, where I € \(n1,m}),J € A(na,mb), m}+mb =
m1 +mg but (mj, my) # (m1,m2).

Remark 4.38. (a) The motivation of the definition is, of course, that we want
[My % Ma] = [M;] x [Mp]
if M7 and My are smooth submanifolds.

(b) Since
dlaNp)=daAp+(-1)"aANdp

for m-forms «, we have

8(T1 X Tg) = (8T1) X Ty + (—1)m1T1 X (aTg).
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As an important special case we consider the following example:

Example 4.39. Let Ty = [[0,1]] € D1(R) and 7> =T € Dy, (R™).

[[0,1]] x T
m
T
R’n
Then
A([[0,1]] xT) = (0Ty) x T — Ty x OT
= (1] = [0]) x T =Ty x OT
=[] xT —[0] x T — [[0,1]] x OT.
1) xT
/ oT \
(:V_T\)H) O [[0,1]] x T
0] xT

Next we define the push-forward of a current under a smooth mapping.

Definition 4.40. Suppose that U: R and V C R are open sets and f: U — V a C®°-mapping.
Let T € D,,(U) be such that f|suppT is proper, i.e. f~'K NsuppT is compact for every compact
K c V. We define fyT € D,,(V'), the push-forward of T under f, by

[T (W) =T(ofw), w€Dp(V),
where ¢ € C§°(U) is any function such that ¢ = 1 in the compact set suppT N f~!suppw C U.

Notice that ¢f*w € D™(U) but it is possible that f*w ¢ D™(U) since supp f*w need not be
compact.

Remark 4.41. 1. If f and T are as above, then 0 fyT" = f;0T.
2. If T; = T and f|(suppT; UsuppT) is proper, then fyT; — fiT.

3. Suppose that My (T') < oo for every W &€ U, and hence
T(w) = /(T(x),w(x»du;p(x) Yw e D"(U),
where T and pr are given by Theorem 4.29. Then the push-forward fyT" is given by

71 = [(F T)aur = [(o(1(@), A mdtsT(@))dpr (o)
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Notice that the formula makes sense if f is C', with f|supp7 proper. Above N, dfz is the
linear map A,, dfz: A,,(R") = A,,(R?) defined by

/\mdfx(eil FANRIREIVAN eim) = dfx(e“) FANEIRIAN dfx(e,m)
for every (i1,...,im) € A(n,m).

Now we can define the homotopy formula for currents. For that purpose let V' C R¢ be open
and let f,g: U — V be smooth mappings. Furthermore, suppose that h: [0,1] x U — V is smooth
such that

h(0,z) = f(x) and h(l,z) =g(z) VzeU.

Since (see Example 4.39)

Ohy ([[0,1]] x T') = hyo([[0,1]] x T)
=hy([1] x T —[0] x T — [[0,1]] x OT)
= hy([1] x T) = hy([0] x T) — hy([[0,1]] x OT)
= 9T = fT = by ([[0, 1] x OT),

we have
(1.42) 0T — f7 = Oy ([[0.1]] x T) + hy([0.1]] x OT).
P
) (— 1] xT .
” /ﬂ
. CT wur ne([10.1]] x 7)
- .- - ; ..... R ;L. -
: [0) x T N T
oT —[[0,1]] x 0T
~ 3
= 77+

An important special case is the affine homotopy
Wt ) = tg(x) + (1 - £)f (x).
Definition 4.43 (Cone). Let T € D,,,(U) with suppT compact. The cone over T is
0<T =h([[0,1]] xT) € D1 (R"),
where h(t,x) = tx.

‘We notice that
00<T)=T—-0<0T.

In particular, if 7" has no boundary, then T itself is a boundary:

T=00<xT).



Fall 2016 99

o

04T or =10

For a linear mapping L: R® — R% we denote by A, L the linear mapping

AmL: Am@®") = A\ m@®)

defined by
/\mL(eil VANERRIVA eim) = Leil A+ A Le;,,

for every (i1,...,im) € A(n,m). If f: U — V is smooth (V C R? open), we see that

(v, frw(@)) = (\ mdfe(v), ()
for all v e A\,,(R™), w € D"™(V), and = € U. Hence we can state:
Proposition 4.44. If T € D,,,(U), with suppT compact and M(T) < oo and if f: U =V is C™,
with f|supp T proper, then

fT(w) = / @ (@), A\ m dfoT (@) dpir ()
and
(4.45) M(f;T) < Lip(f|supp T')"M(T).

Recall that

Lip(g) := sup { l9(=) =9l y} .

|z =y
The inequality (4.45) follows from the estimate
|\ m dfe(T(2))| < Lip(f[suppT)™, x € suppT,

which, in turn, is a consequence of

|/\mL(ei1 ASEERA eim)

Suppose that h: [0,1] x U — V is the affine homotopy h(t,x) = tg(z) + (1 — t)f(x) between
smooth mappings f,g: U = V. If T € D,,,(U), with M(T) < oo, we have

< L™

(4.46) M (hy([[0,1]] x T)) < sup |f —g| sup (|dfs] + |dgu])" M(T).

supp T’ zesupp T’

This follows from the integral representation (Theorem 4.29) since

-
[[0,1]] xT=e; AT and ,u[[o’l]] o = (mac[0,1]) x pp,
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and therefore

hﬁ([[oa 1]] X T) ((U) = /<W(h(t, 33))7/\ m+1dh(t,x) (61 AN f(gj))>d#[[071}] T
1
- </ (w(n(t,2), (9(@) = f@))er A [\ m(tdgs + (1 - t)dfx)f(a:»duT) dt.

Next we state a couple of further consequences of the homotopy formula.

Lemma 4.47. Let T € D,,(U), with My (T) < oo and My (0T) < oo for every W € U. If
f,9: U =V CcR? are C* smooth with f|suppT = g|supp T proper, then [T = gT.

Proof. Applying the homotopy formula (4.42) with h(t,z) = tg(x) + (1 — t) f(x) we obtain
0T(0) — £7() = Ohy([0.1] % T) (@) + ([0.1] x O7) @)
= hy([[0,1]] x T)(dw) + hy([[0,1]] x OT)(w),
and therefore, by (4.46),

|9:T(w) = FT ()] = |7g ([[0, 1] x T)(dw) + hy([[0,1]] x OT) (w)]
< [hg([[0, 1] x T)(dw)| + [Ag([[0, 1] x OT) (w)]
< Mg ([0,1] 7))l + M (1 ([0, 1]] x OT))
< ¢[M(T)]dw| + M(9T)|w] Sup lg—f1=0
since, by assumption, f = g in suppT. O

With help of the homotopy formula we can define f3T" for a Lipschitz mapping f: U — V C R¢
provided f|suppT is proper and My, (T') < oo, My (T') < oo for every W € U. For that purpose,
let 1., € > 0, be a standard mollifier;

ne(x) = e "n(x/e),

where 7: R" — [0, 00) is C*°, with suppn C B(0,1) and [n = 1.
Given a Lipschitz map f: U — V we define the C* mapping () = f % ..

Lemma 4.48. Let T € D,,(U), with My (T) < oo and My (9T) < oo for every W € U. Let
f:U =V CR? be Lipschitz with f|suppT proper. Then the limit

4T (w) := lim fﬁs)T(w)
e—0
exists for every w € D™ (V). Moreover, supp fyT C f(suppT) and

w(fyT) < (ess sup ]dfx])meqW(T)
ftw

for every W € V.
Proof. Fix w € D"™(V). If e > 0 and o > 0 are sufficiently small (depending on w € D™(V)), the
homotopy formula with h(t,z) = t£ (z) + (1 — )@ (z) implies
FOT(w) = [T (w) = 0hy([[0,1]] x T) (w) + hy([[0,1] x 0T)(w)
= hy([[0,1]] x T)(dw) + hy([[0,1]] x OT)(w).
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For sufficiently small ¢ > 0 and o > 0 we get from (4.46)

1£9Tw) — £7Tw)| < sup  [f© — FO|Lip(f)™,
f1KnsuppT

where K C V is a compact set containing suppw in its interior. Since f() =0 f uniformly on
compact subsets of U, the claims follow. O

Theorem 4.49 (Constancy theorem). Let U C R™ be a domain (i.e. open and connected). If
T € D, (U), with 0T = 0 and My (T) < oo for all W € U, then there exists a constant ¢ such that

T= C[U]7

that is
T(cpda;l ERRWA dx") = c/ podmy,
U

for every v € C§°(U).
Note that m = n above.

Proof. By Theorem 4.29 there exist a Radon measure ur and a pp-measurable function o: U —
{—1,1} such that

T(w) = /(w(az),a(z)el A Nep)dur(x) = /mpduT = /cpd,u; — /gpdu;

for every w = @da' A --- Ada™ € D"(U), where ,u; — prifo =1} and pg = ppi{o = —1}. Let
1., € > 0, be as above. Define
T:(w) :=T(n: * w)

for 0 < e < dist(suppw, dU) and for continuous n-forms w € Co(U, A" (R™)) with compact support
in U. Here 1. ¥ w = ne x pda! A--- Adx™ if w = @da' A--- Adax™. We first observe that, for fixed
W € U and € > 0, the set

S={n-*w:wée CO(U,/\"(R"),suppw C W,/ |w|dm, <1}
U

is compact in Co(U, A\"(R™)) with respect to the norm (| - |) topology. Hence, by continuity of T
also with respect to the norm topology, there exists a constant ¢ = ¢(T', W, ¢) such that

(4.50) T (w)] < c / w|dmy,
U
for every w € Co(U, \"(R"), with suppw C W. On the other hand,
Te(w) = T(ne % w) = /na * pdpr — /775 * @ dpu

if w = pdax! A---da™, o € Co(W). Applying the Riesz representation theorem to positive linear
functionals

cpH/ne*sod/fTE, @ € Co(W),
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we get Radon measures p and pZ such that

/newdu% Z/sodui and /ne*wdu% Z/sodug_-
Hence, by (4.50),

‘/s@dui—/wdue‘

and therefore pt, u- < m,. The Radon-Nikodym theorem then implies that there exists g. €
L'(m,,) such that

=T (w)| < c/ lwldm,, = c/ loldmy,,
U Supp ¢

(151) 7.0) = [ vg.dm,

for w = pdax! A--- Ada™, ¢ € Co(W). On the other hand, since 9T = 0 by assumption, we have
(4.52) Te(dw) = T(ne * dw) = T(d(n: * w)) = 0T (e *w) =0

if w e CL(U, A" (R™)), with suppw € W. Applying this to

w=@dz' A Ad?TEANdTTEN A da®,

for which 5
dw = (1) 22 az Ao A da™,
Lj
we get
j—1 dyp
(4.53) T (dw) = (—1)’ /—gE dm, =0
8a;j

for all p € C}H(W) and for all j € {1,...,n}. It follows that the distributional gradient of g.
vanishes mp-a.e. and therefore g. = c. my-a.e., where c. is a constant'. Letting then ¢ — 0 and
W U, we obtain (by continuity of T')

e—0

T(w) = lim T, (w) = lim ce/ edmy, = c/ wdmy, = c[U](¢)
e—0 U U

for all w = pdx! A --- A dz™ € D*(U), where the limit

limec. = ¢
e—0

exists since the limit
lim 7. (w) = lim ¢, / wdmy,
e—0 U

e—0
exists. O
Next we want to weaken the assumption 07" = 0 to M(9T') < co. Before we state the theorem

(Theorem 4.65), which a generalization of the Constancy theorem, we first discuss about functions
of bounded variation. We refer to e.g. [EG], [Si], [Ho3] for more details.

LThis follows from Poincaré’s inequality for W''!-functions.
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Definition 4.54. Let U C R" be open and u € L{ (U). Define

/ |Du| := sup{/ udivg: g = (g1,...,9n) € Ca(U;R™), |g| < 1}.
U U

Above [;|Du| should be understood just as a notation (not an integral). Furthermore,

¥ 0gi
divg = Z
i—1 z;

is the usual divergence.

Example 4.55. (a) If u € C*(U), then integration by parts implies that

/udivg:—/Vu-g Vg € C3(U;R™),
U U

/|Du|:/ V.
U U

(b) More generally, if u belongs to the Sobolev space W, (U), then again

loc

/ |Dul = / Vul,
U U

where Vu is the distributional gradient of u.

and so

Definition 4.56. A function v € L (U) is said to have bounded variation in U if

loc
/ |Du| < oo.
U

We denote by BV (U) the vector space of all functions u € L!(U) with bounded variation in U.

Definition 4.57. Similarly, a function u € Li _(U) has locally bounded variation and belongs to

BVioe(U) if
/ |Du| < oo
1%

for every relatively compact open set V € U.
The proof of the following theorem is an application of the Riesz representation theorem.

Theorem 4.58. For every u € BV o.(U) there exists a Radon measure p on U and a p-measurable
mapping o: U — R™ such that

(i) lo(z)| =1 for p-a.e. x € U;

(i)
/udivgda::—/g-ad,u
U U

for every g € C(U;R™).
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Remark 4.59. 1. If u € BV, (U), we denote by | Du|| the Radon measure p given by Theo-
rem 4.58 and by
[Du] = || Dull.o

the vector valued measure d[Du| = o d||Du||. Hence

/udivg:—/g'adHDuH:—/g-d[Du]
U U U

2. f ue BV(U) and V € U is an open subset, then

for g € CH(U;R™).

Dulv) =sup{ [ udivgde: g € CHui).Jol <1}
1%

Hence, using our earlier notation,

/ Dl = || Dul|(V).
174

Theorem 4.60 (Lower semicontinuity). Let U C R™ be open and u; € BV(U), j € N such that
u; — u in LL_(U). Then

loc

(4.61) / | Dl <hmmf/ | Duj|.

Theorem 4.62. The vector space BV(U) equipped with the BV-norm

lullsy = [lull 1) + /U Dul

1s a Banach space.

Functions in Sobolev spaces W' P(U), 1 < p < 0o, can be approximated by C*(U) functions
in the Sobolev norm
ullip = llullp + [[Vulllp-

In fact, WHP(U) is the completion of C°°(U) in the Sobolev norm and since BV(U) # W(U),
functions in BV(U) can not be approximated in the BV-norm. However,

Theorem 4.63 (Approximation). Let u € BV(U). Then there exists a sequence uj € C*(U), j €
N, such that

tim [ fuy =l =0,
j—oo

hm/|VuJ|—/ | Du|.

Suppose that u € BV(U) and u; € C*°(U) are as above. For each j € N let 11; be the vector-
valued Radon-measure defined by

wi(B) = / Vu; dx
BnU

for Borel sets B C R™. Furthermore, let 1 be the vector-valued Radon measure

,u(B):/ d[Du]:/ o d|Dul|.
BNU BNU
Then p; — p.
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Theorem 4.64 (Compactness). Let U C R™ be an open set. Ifu; € BVio.(U), j € N, is a sequence

such that
sup (nujnp(m - [ |Duj|> < o0
7 w

for every W € U, there exist a subsequence (uj,) and u € BVioc(U) such that uj, — u in L]

loc(U)
and
/ | D Sliminf/ | Du;, |
w k=00 Jw
for every W € U.

Let us now return to consider n-currents. In the next theorem, which is a generalization of the
Constancy theorem, we weaken the assumption 97 = 0 to M(9T) < oo.

Theorem 4.65. Let T € D, (U) such that M(0T') < oo and My (T') < oo for every W € U. Then
there exists g € BVioc(U) such that

(4.66) T(w) = / pg dm,

for allw = pdz A -+ A dx™ € DV(U).

The proof is a modification of the proof of the Constancy theorem. Instead of equality (4.52)
we now have an estimate

(4.67) '/ g%ggdmn = |T.(dw)| < sup|ne * o|M(9T) < c.M(9T)
J

if w=@dz* A---dz?"P AdaI LA A da™, with p € CHW), |¢| < 1. Here c. is a constant that
depends on ¢ and ¢. — 1 as € — 0 since 7. * ¢ — ¢ uniformly. We apply (4.67) with

w=(=17®;dz" Ao AdxTT AdaTTEA - da”,

where ®; € C}(U), supp ®; C W, is the jth-coordinate function of ® = (®4,...,®,) € C}(U,R"),
with |®| < 1. We obtain

/ (div ®)g.dm,,
U

- / Z %ggdmn < ne:M(9T) < 2nM(9T)
U’ — J
7j=1

for all @ € C}(U,R"), with |®| < 1, and 0 < € < dist(W, 9U) small enough. Hence g. € BV(W). It
follows from the Poincaré’s inequality for BV -functions (see e.g. [EG, 5.6.1], [Si, Lemma 6.4]) that
ge is locally uniformly bounded in L'(U). We conclude (using Theorem 4.64) that there exists a
sequence £ \, 0 such that g., — g in LL (U) with g € BV},c(U). Moreover, it follows from (4.51)
that

T(w) = /U g dmy,

for w = (pdxl A---ANdx" € D"(U)
Writing an arbitrary o € D"~ }(U) as
n
& = Z(—1)1<I>jdx1 Ao Ade? U A AT A - da?
j=1
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we first observe that
do = (div ®)dz! A--- Adz", & = (Bq,...,D,),

and therefore
T (o) = T(da) = T((div ®@)dz' A -+ Adz™) = / (div®)g dm,,
U
by (4.66). Finally, it follows directly from definitions that

My (T) = / lgldm,
w
and

My (0T) = /W |Dg| = | Dgl|(W)

for every W € U.

The last theorem in this subsection deals with restrictions of m-currents to subsets of R"
with ”small” orthogonal projections onto R". To state the result, we define for each multi-index
I=(i1,...,im) € N(n,m) the orthogonal projection Pr: R™ — R™ by

Pr(z) = Py(z1,...,2p) = (%iy, ..., i, ) € R™.
Theorem 4.68. Suppose that E C R"™ is a closed subset of an open set U C R™ such that
H™(PIE) = 0 for every I € N\(n,m). Then T_E = 0 for all T € Dy, (U), with My (T) < oo
and My (0T) < oc.

Proof. Let w € D™(U). We can write

w= Z wrdz!,  da’ =dx A ANdatm ) T = (iy, .. i).

IeA\(n,m)
Hence
T(w) =Y T(wda') => (Tiws)(ds")
I I
(4.69) = (Tewr)(Pr(dy" A=+ A dy™))

I;
= Z P]ﬁ(TI_WI)(dyl A ANdy™),
I;

where we have denoted by dy' A --- A dy™ the standard basis m-form in R™. The push-forward
makes sense since supp(7'Lwy) is a subset of suppw; which is a compact subset of U.
For any 8 € D™ }(U)

a(TLw])(,B) = (Tuu;)(dﬁ) = T(O.)[B) = T(d(w;ﬁ)) — T(dw] VAN 5)
= 0T (w1f) — T(dwr A B),

and so

(4.70) My (0(Tewr)) < My (0T)|wr| + My (T')|dwp|.
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We obtain
M (0Pp(Tiwr)) = M(Prd(Twr)) < c(n,m)M(0(Trwr)) < oo

by (4.45), (4.70), and the assumptions My (T'), My (0T) < oo YW & U. Therefore, by Theo-
rem 4.65, there exists g € BV(P;U) such that

Pry(Tewr)(8) = /P (Beer A A edgdm,

and hence
P[ﬁ(TI_O.)[)LP[E =0

since my, (PrE) = 0. Assuming, without loss of generality, that E is compact, we have
Pr(Tiwy) = Pra(Tew) (R™ \ P E) = P, ((TLM)L(R" \ P;l(PIE))>.
This implies

M(P[ﬂ(TLwI)) < M((TLWI)'—(Rn \ Pl_l(PIE)))
(4.71) < M((Tewr) (R™\ E))
< My (TL(R™ \ E)))|wi]|

for every open W such that suppw C W € U. Combining (4.69) and (4.71) we get
My (T) < cMyy (TL(R™ \ E))
for all open W € U. In particular,
M(TLE) = My (TLE) < cMy (TL(R" \ E))

for all W € U, with £ C W. Choosing a descending sequence of open sets W; € U such that
E =n;W;, we get
M(TLE) < cMy;, (TL(R™ \ E)) — 0

which implies T_LE = 0. O

4.72 Rectifiable currents

Definition 4.73. An m-current T € D,,(U) in an open set U C R" is called a rectifiable m-current
if there exist

1. an m-rectifiable Borel set E C U, with H™(F) < oo;
2. an ‘H™-integrable positive function : E — (0,00), and

3. an H™-measurable mapping T: E — N,,(R™) such that, for cH™-a.e. = € E, T(z) =
v1(Z) A+ - Avg(x) where vy (), ..., vy, (x) is an orthonormal basis of the approximate tangent
space 17", and that

T(w) = /E (w(2), T(2))0(a)dH™ (z)

for all w € D™(U). Note that |T'(z)| = 1 for H™-ae. z € E.
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The function 6 is called the multiplicity of T and T is called the orientation for T. We write
T =7(FE,0,T). Such a current T is called an integer multiplicity (rectifiable) m-current, denoted
T € Rn(U), if 6 is integer valued.

Example 4.74. (1) If 11,75 € R, (U) and p1,ps € N, then p1 Ty + poTs € Ry, (U).
(2) If Ty = 7(E1,01,Th) € Ron(U) and Ty = 7(Es, 05, Ts) € Ri(V), then

Ty x Ty = T(E1 X E2,9192,f1 AN TQ) € Rm+k(U X V)

(3) If f: U — V is Lipschitz, T = T(E,H,f) € R(U), and f|suppT is proper, we can define
fﬁT € Dm(v) by

77@) = [ (@) \"a® 5T (@)0( (@) " @)
for w € D™(V). Since
A" f:T(@)| = IF (@),
we get from the area formula that

N A™dP f,T(x) m
(4.75) fiT(w) = /f ; <w<y>,x€f%me<m>‘ N fmf($)‘>dfﬂ (y),

where By = {z € E:J fE () > 0}. Notice that fE is m-rectifiable, and therefore the
approximate tangent space T," fE exists at H"™-a.e. x € fE. Hence at points y € fE where
T, fE exists and for which T;"E and d¥ f, exist for all z € f~1(y) N E,, we have

A fx_’(x) =TI A AT,
|A™dP .1 (2)]
where 71, ..., 7y, is an orthonormal basis of T f E. Hence we obtain from (4.75)

fT(w) = /f (). SN IR (),

where §(y) is an orientation of Ty fE' and N (y) is a positive integer satisfying

0(x =
2 )

ref~1(y)NE4

In conclusion, fyT' € Ry, (V).

= N(y)S(y).

Definition 4.76. An m-current P € D, (U) is a polyhedral (m-)chain if there exist m-dimensional
oriented simplices 71,...,m C U and p1,...,pr € R such that

k

P=> pim].

i=1
If p1,...,px € Z, P is called an integral polyhedral chain and we denote
P e P, (U).
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Recall that an m-simplex 7 is the convex hull of its m + 1 affinely independent vertices
ag, - - . ,am € R™, that is a1 — ag, a2 — ag, ..., a;, — ag are linearly independent and

m

™ = {i)\iaiz Z)\’ = 1,)\2' > OVZ} .
1=0 1=0

Theorem 4.77. If T; € R, (U) is a sequence (of integer multiplicity rectifiable m-currents) with

sup (M (T;) + My (0T;)) < oo
1EN

for all W € U, then there exist a subsequence iy and T € R, (U) such that T, = T.

Note that the existence of a subsequence and an m-current 7' € D, (U) such that T;, — T
follows from the Banach-Alaoglu theorem; see Theorem 4.36. The difficulty is to prove that T is
an integer multiplicity rectifiable current; we will return to this later.

The next theorem gives a criterion of rectifiability.

Theorem 4.78. Let T € D,,(U) with M(T') < co. Then T € R, (U) if and only if for every e >0
there exist P € Ppp(RY), d > m, and a Lipschitz map f: RY — R™ such that

(4.79) M(T — f,P) < e.

Proof. Idea: Let T € D, (U) with M(T) < oo. Each m-simplex is a subset of R™ C RY
and hence f;P is an m-rectifiable integer multiplicity current. Apply (4.79) with &; N\, 0, i.e. let
P; € P (RY) such that

M(T — fﬁPZ) < &;.

Then, for every w € D™(U),
T(w) = fePi(w)| = (T = fyF)(w)| < M(T — fyP)|w| — 0.

Hence T', as a limit of integer multiplicity m-currents f;P; € R, (R"), is an integer multiplicity
m~current; see Lemma 4.80.

Let e > 0 and T = 7(E,0,T) € Rim(U). We may assume (ignoring a set of H"-measure
zero) that F is a countable union of Lipschitz images f;A;) of subsets A; C R™. Furthermore, we
may assume that the sets A; are disjoint and that 0|f; A; takes a constant value §; € N. Then we
take 6; copies A; j, j =1,...,0; of A; such that all the sets A;;, 1 € N, j =1,...,0;, are disjoint.
Now we can define a Lipschitz map (after applying the corollary of the McShane-Whitney extension
theorem) f: R™ — R™ such that fA; ; = fA; and that f preserves orientation. On the other hand,
each A; j can be approximated by finitely many m-simplices and hence T' can be approximated (in
mass) by an integral polyhedral chain. U

In the above proof, the step M(T — f4P;) — 0 = fyP; — T is relatively easy.

Lemma 4.80. The set of integer multiplicity rectifiable currents in D, (U) is complete with respect
to the family of seminorms {My: W € U}.

Proof. Let T; = T(Ei,Hi,T;) € Rn(U), i € N be a Cauchy sequence with respect to the family
{Myw: W € U}. Then

(4.81) Mi(T; - T,) = [ 168~ 0T " < <(V.3)
w
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for ¢ > j, where e(W,5) \, 0 as j — oo, and we have made a convention 0, = 0 and Tp = 0 in
U\ E. Since |Ti(z)| =1 in Ej, we get

(4.82) 10t <o), iz
w

Hence 6; — 60 in LL (U, H™), where 6 is integer valued. From (4.82), we get
(4.83) H™ (B \ E5) U (B \ Ey)) <e(W,j),
where By = {z € U: 0(x) > 0}. Since
615 — 5| = 16,75 — ;T + (6; — 0)T5| < 16T — 6,151 + 16, — 6:lI 5,
we have
[ o~ Tl < 2.3, iz
w

and therefore T, converges in LL (H™) to T:U — A, (R"), where T is simple and |T| = 1 in
E,. Since T; € \,,(TuE;) for H™-ae. © € Ej and T,E; = T,E, in E; N Ey except a set of
H™-measure < (W, j) by (4.83), we conclude that T' € A (T ES ), and so M(T — T;) — 0, with
T =7(EL,0,T) € R (U). O

4.84 Slicing

In this subsection we introduce the slicing of a current by level sets of a Lipschitz function. [Recall
the co-area formula and, in particular, Theorem 2.59, where we ”sliced” an m-rectifiable set E by
level sets of a Lipschitz function.]

Definition 4.85. A current T € D,,,(U) is normal, denoted by T € N,,(U), if supp T is compact
and
M(T') + M(9T) < .

Definition 4.86. Let T' € N,,(U) be normal and f: R™ — R a Lipschitz map. The slice of T with
fandteRis

(T, f,t) :== (T)Ax: f(z) >t} —O(T{z: f(x) > t}) € D1 (U).

\ \ P
OTL{f >t}
fsto It (T, £, 1)

T{f >t}

Theorem 4.87. The slices have the properties:

(1)
(T, f,t) =0(TA{x: f(z) <t}) — (OT)Az: flz) <t}

except at most countably many t;
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(2)
supp(T’, f,t) C f~(t) Nsupp T}
(3) .
M((T, f,t)) < Lip(f) lign\i‘gf E,LLT({:EZ t < f(z) <t+h});
(4) ,
| MUE f))de < Lin(r (a0 < (o) < b))
(5)

T, f,t) = (0T, f,1);
(6) (T, f,t) is normal for almost every t.
Proof. Idea of (some) proofs: (1) holds for every t for which
(ur + por)({z: f(t) =t}) = 0.
(2) is easy. To prove (3), we approximate the characteristic function
X{z: f(z)>t}
by a sequence of C* functions ¢ such that g(z) = 0if f(z) <t, f(z)=1if f(x) >t+ h, and

ALip(f)

Li <

where A > 1, A = 1. Then
M((T, f,t)) ~ M((8T).g — (T g))
= M(T' dg)
< Lip(g)pr ({z: t < f(z) <t +h}).
(4) follows from (3) by integration, (5) is clear, and finally (6) follows from (4) and (5). O

Next we slice integer multiplicity rectifiable currents.

Theorem 4.88. Let T = 7(E,0,T) € Ry, (U), with M(OT) < oo and let f: R" — R be a Lipschitz
function. Then for a.e. t € R:

(1) (T, f,t) = 7(Ey,0,,T), where
Ey=En f ),
0(x), if z € E; and VF f(x) # 0;
Ht(.’,l') = . E
0, if v € Ey and V" f(x) =0,

— = VEf(z
Ti(x) = T(scﬁﬁ,

)
| M gya = [ 98 o < Lin(r o),

—0o0
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(3) <T7 f7 t> € Rm—l(U)) with M(8<T7 f7 t>) < oo and 8<T7 f7 t> = _<8T7 f7 t>
The interior multiplication : A, (V) x AP(V) = A,_, (V) is characterized by the condition
(vea, B) = (v, A B)

whenever v € A (V), a € AP(V), B € ATP(V). Moreover, there is the standard biduality between
finite dimensional inner product spaces A,,(V) and A™ (V). That is, for every n € A" (V) there
exists a unique w € A, (V') such that

(4.89) (v,w) = (n,v) Yve /\
Hence, in particular, T(z).V¥ f(z) € \,,_,(T7'E;) is characterized by the property
(T(2)VF f(2),n) = (T(x),d" fz A )

for all n € A™ NI 1E).

Proof of Theorem 4.88. Let h: R™ — R be Lipschitz and let h, = 7. *xh be as before. Then h, — h
locally uniformly as € — 0. Now

T (hew) = T (d(hew)) = T(dhe Aw) + T(h-dw)
for all w € D™(U). Here

OT (how) = / (T, hew)dpigr — / (T, hwdpor = (OTLR)(w)

and

T (hedw) = / (T hedw)dpr — / (T, hdw)dpr = (Toh)(dw) = O(TLR)(w)

as € — 0. So,
(0T Lh)(w) = 11_)1% T(dh: A h) + O(TLh)(w),

where
T(dhe A h) = /E (T(2), dhe () A w)8(2)dH™ ()
- [ F@).dh(@) nwpp(a)an @)
v / (T(2) .V Phe (), () B()AH™ ()
o / D) VER(2), w(2))0(2)dH™ ().
2 Hence we get from the convergences above that

(0T h)(w) = é(f(w)Lth(az),w(w)>9(m)d7—lm(az) + 9(TLh)(w)

2The last convergence holds since VZh, — VZh weakly in L*(H™L0) which, in turn, can be proven by noticing
that B = U2gE;, H™(Eo) =0, and E; C M;, with M; a C'-smooth submanifold.
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for Lipschitz functions h: R™ — R.
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Let then f: R™ — R be Lipschitz, t € R, and € > 0. Define a continuous function v.: R — R

by
0, ifs<t—e,
Ve(s) = ¢ linear, if t —e < s < t,
1, if s>t
and g. = . o f. We then have
(4.90) (0T ge)(w) = / (T(2) VP ge(2), w(2))0()dH™ () + O(Trge) ().
E
Now o
g-(x) === x50 (),
SO
— —
(4.91) (0T g:)(w) = /<8T795w>dM8T — /<3T,X{f>t}w>dﬂacr =0T {f > t}(w).
Similarly,
(4.92) (T'ege)(dw) = / (T, gedw)dpr — / (T, x¢>tydw)dpr = O(T{f > t}) (w).

By the chain rule
VEge(ﬂj) = VE('Vs of)(w) = VI(f(x))vEf(x)

0, if f(z) <t—ceor f(x) >t
C\iVEf(a), ift—e < f(z) <t

SO

€
{z€E: t—e<f(x)<t}

/E () Y ge (), () (@) dH™ () = - / () V2 (1), (@) () dH™ (2)

€ IVEFI

{z€E: t—e<f(x)<t}

t
_ 1/ (/ (T, )8, d%m—1> ds
3 t—e s

— [ (T}, w)0 dH™ "
Ey

for a.e. t € R. Recalling (4.90)-(4.92) and the definition of (T f,t) we get

<T7 f7 t> = (8T)'—{f > t} - 8(T'—{f > t})
= gii%(aT‘—ge) - il_rf%) I(Tvge)

=lim [ (T V¥g., )0dH™

e—0 E

= / (Tt, ) ordH™ !
Ey

= T(Eta 0t7 ﬁ))

_1! / <TL ver w> VE flodH™
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and therefore (1) holds. (2) follows from (1) and the co-area formula. (3) follows from (1), Theo-
rem 2.59, and Theorem 4.87 (5). O

It is possible to slice an current T' € D,,(U) with a Lipschitz map f = (f1,..., fx)): R" —
R*, k < m, and a value y = (y1,...,yx) € RF by iterating the slicing with f; and y;:

<T7 f7y> = << <<T7 f17y1>7f27y2> >7fk7yk> € Dm—k(U)

4.93 Deformation theory

The deformation theorem is one of the fundamental results and it provides a useful approximation
of a normal current T by a polyhedral chain P lying on a certain m-skeleton such that the error
is of the form T'— P = OR + S. The main error term is OR, where R is the (m + 1)-dimensional
surface through which T is deformed to P. The other error term S arises in moving 9T into the
skeleton.

We will only state the result and sketch the (long and technical) proof. First we introduce some
notation: Fix k,m,n € N, 0 <m < n, and £ > 0. We denote by

Q: = [0,e]" CR"

the closed n-dimensional cube of side length £ and by

k
L. = U L. ;= {n: 7 j-dimen. closed face of some Q. + pe, p € Z"}

)

j=1
the k-skeleton of mesh . Thus the elements of
o L. are singletons (vertices),
e L. are closed line segments (edges) of length e,
e L. are closed squares of side length ¢, - --
e L., are the closed n-cubes Q. + pe, p € Z", of side length ¢.

Moreover, we denote by Vz1,..., V. n, N = (mil) the (m + 1)-dimensional affine subspaces of R"

that contain some (m + 1)-face of Q.. Finally,
PEJ'Z R™ — ‘/57]'
denotes the orthogonal projection onto V; ;.

Theorem 4.94 (Deformation theorem). Let € > 0 and T € D,,(R™), with M(T) + M(9T) < oc.
Then there are P, S € Dp(R™) and R € Dy,41(R™) such that

T—P=0R+ S,
where P, R, and S satisfy the following:

(4.95) = Z azlm], ar €R,

(4.96) M(P) < eM(T), M(dP) < cM(AT),
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(4.97) M(R) < ceM(T), M(S) < ccM(0T),
with ¢ = ¢(n,m), and
supp P Usupp R C {x € R": dist(z,suppT) < 2ev/n},
supp OP Usupp S C {x € R": dist(x,supp dT) < 2ev/n}.

If T € Rin(R™), also P and R can be chosen to be integer multiplicity with o, € Z. If, in addition,
OT € Ry—1(R™), also S can be chosen to be integer multiplicity.

For the proof, we may assume that ¢ = 1. Indeed, the "scaled version” 4.94 follows from the
"unscaled” one where ¢ = 1 by first applying the homothety x +— x /¢, then applying the "unscaled
version” and then scaling back by x + ex. In particular, the linear dependence of the constant ce
in (4.97) on ¢ is then obvious.

The main tool in the proof of the deformation theorem is the following lemma that provides a
suitable class of retractions to push-forward 7" into the m-skeleton L ,, (in the unscaled version).
We denote by ¢ = (1/2,...,1/2) the center of the unit cube @ = Q1 and abbreviate Ly, = Ly 1, L, =
L1, and P; = P; ;. Given a point a € B(q,1/4), we denote

Ly—m-1(a) =a+ Ly_m—1 (shifted skeleton)

and
Lyp—m-1(a;p) = {z € R": dist(z, Ln-m-1(a)) < p}, p € (0,1/4).

Then
dist(Lp—m—1(a), Lm) > 1/4 Va € B(q,1/4).

Lemma 4.98. For every a € B(q,1/4) there is a locally Lipschitz map
P: R"\ Ly—m-1(a) > R"\ Lp—m—1(a)
such that
Y(Q\ Lyn—m-1(a)) = QN Ly,

¥|Q N Ly, = idgnL,
IDf(z)| <c/p

for mp-a.e. x € Q\ Ly—m—1(a;p), p € (0,1/4), with ¢ = c¢(n,m) and that
Y(z+1x)=2+9Y(x)
for allx € R™\ Ly_m—1(a) and z € 2.
Thus v is a Z™-periodic retraction of R\ L,,_,,—1(a) onto L,,. The rough idea is then to define
P =T,
R = hy([[0,1]] xT),

and

S1 = hy([[0,1]] x T),
where h(t,x) =tz + (1 — t)1(x), so that the homotopy formula gives

T=P+0R+ 5.
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Choosing the point a € B(q,1/4) properly (depending on T') we may get estimates
M(P) < eM(T),
M(OP) < cM(9T),

M(R) < eM(T),

and
M(Sy) < eM(9T).

We notice that P need not be a polyhedral chain. It is used to choose appropriate multiplicities of
the m-faces in the m-skeleton. For each m-face F' € L,,, PLF corresponds by Theorem 4.65 to a
BV -function 0f so that

M(I5\_F):/F|9F|d7-[m, M((0P).F) :/F|DeF|de.

Letting then

1
——— | fpau™

P= Y mplF]

Felm

we define

and )
SZSl—l-(P—P).

In the proof of the mass estimates, for instance, slicing is used.
Next we give some applications of the deformation theorem.

Theorem 4.99 (Isoperimetric inequality). If T € R, (R™) with supp(T) compact and 0T = 0,
there exists R € Ryp+1(R™), with supp(R) compact, OR =T and

M(R)™/ ™+ < ¢, ,,M(T).

Proof. We may assume T # 0. Choose ¢ > 0 so that €™ = 2¢M(T'), where ¢ = ¢(n,n) is the
constant in the deformation theorem. By the deformation theorem, there are P, R, and S such that

T=P+0R+S,

where R € Ry,4+1(R™), with compact support,

P= Z aglr], o €Z,

TELe,m
M(P) < eM(T),
M(S) < ceM(0T),
and
M(R) < ceM(T) = ¢(2¢)Y/™M(T)m+0/m,
Since 0T = 0, we obtain from above that S = 0. On the other hand,

M(P)= > lax[H™m) =™ |ax| = 2eM(T) > o] < cM(T),
€L, m ™ m \E’Nj

so a; = 0 for all 7, and therefore P = 0. Finally, since P =S = 0, we have OR =T O
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To state the other application, we first give a definition.

Definition 4.100. The flat distance between m-currents 17,1y € D,,(R") is
F(Th,T;) = inf{M(S)+ M(R): Ty — T, =0R+ S, R € D, 11(R"), S € D,,,(R")}.

Remark 4.101. F(-,-) is a metric in {T" € D,,(R™): M(T) < oo} and a convergence with respect
to F' is stronger than the weak convergence (i.e. convergence as currents):

F(T;,T)—-0=1T,—>T,
but weaker than the mass convergence:
M(T,-T)— 0= F(T;,T) — 0.

Theorem 4.102 (Polyhedral approximation theorem). If T' € D,,(R"™) with M(T)+M(9T) < oo,
there exists a sequence Py of the form

Pk: Z O‘ﬂ[ﬂ-]’ Qr 6R7

Weﬁsk m

such that F(T,P;) — 0 as k — co. If T' € Ry (R™), we may choose ar € Z, so that Py € Pp(R™).

Proof. Applying the deformation theorem with e \, 0, we get
T — P, =0Ry + Sy,
where

M(Rk) < CEkM(T) —0
and
M(Sk) < CEkM(aT) — O,

and therefore
F(T,Py) < ce,(M(T) + M(9T)) — 0

as k — oo. O

4.103 Rectifiability and compactness theorems
We say that a subset D C X of a metric space X is e-dense, € > 0, if
X =[] B(x,9).
z€eD

Furthermore, X is totally bounded if, for every € > 0 there exists a finite e-dense set D C X.
Finally, recall that a metric space is compact if and only if it is complete and totally bounded.
We define the flat norm F(T) = F(T,0) for T € D,,(R™), that is

F(T) = inf{M(S) + M(R): T = R+ S, R € Dpps1(R"), S € Dp(R™)}.

Thus
F(T;) - 0=1T; —0.

The following converse holds for (integer multiplicity) rectifiable currents.
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Theorem 4.104. Suppose that Ty, T; € Rp(R™), with suppT; C K C R™ and K compact, and
that
sup{M(T};) + M(0T;)} < oc.
J

Then
T; =Ty < F(I; —1Ty) — 0.

Before the proof we first established the totally boundedness property: For every € > 0 and
M > 0 there exists N = N(n,m,e, M, K) € N such that

N
(4.105) {T € Rn(R"): supp(T) C K, M(T) + M(9T) < M} C | Br(R;,e)
j=1

for some Ry,..., Ry € Rpy(R™), where
Bp(R,e) ={T € Rpn(R™): F(T — R) < ¢}.

Let 6 > 0 to be fixed later. By the deformation theorem there are P, S € R,,(R"), R € Ry41(R"™)
such that
T—P=0R+ S,

where

(4.106) P = Z azlw], an €Z,
ﬂe‘cé,m

(4.107) M(P) =Y |o|6™ < M(T) < M,

(4.108) supp(P) C {x: dist(z, K) < 26y/n},

(4.109) M(R) < c¢6M, M(S) < oM.

Then

F(T — P) < M(S) + M(R) < 2¢5M < ¢

by choosing § < £/(2¢M). On the other hand, there can be only finitely many, say at most N,
currents P satisfying (4.106)-(4.108), where N depends only on K and § = §(n,m,e, M). This
proves the local boundedness property (4.105).

Proof of Theorem 4.104. We need to prove the implication T; — T = F(1; — T) — 0. First
we claim that the total boundedness property (4.105) implies that there is a subsequence T;; F-
converging to Ty € R (R"), i.e. F(T;, —Ty) — 0. Since {T}} belongs to a union of finitely many
F-balls of radius 1, there exists R € R,,(R") such that Bp(R,1) contains infinitely many Tj’s,
call them T ;. Similarly, there exists another R € R,,(R"™) such that Bp(R, 1) contains infinitely
many T3 ;’s, call them T3 ;, and so on. Then the diagonal sequence (Tj ;) is a Cauchy sequence
with respect to the F-norm. Passing to a subsequence, still denoted by (77 ;), we may assume that

[e.e]
i=2
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where
Tjj —Tj—1j-1=0R; + S, Rj € Rm1(R"), S; € Rmn(R"),
with
Z [M(Rj) + M(S])] < 0.
j=2
By Lemma 4.80
> R € Rmi1(R?), > 8; € Rm(R")
j=2 j=2

as limits of Cauchy sequences in the mass norm. Then for

Té = T171+ZS]-+8ZR]',

=2 =2
it holds that
F(Ty—Ti5) < > [M(Ry) +M(S;)] =0
i=j+1

as j — oo. Hence T; — Ty, and so T) = Ty and F(Tj; — Tp) — 0. Supposing that there exists
a subsequence (7j,) such that liminf F'(T}, — Tp) > 0, we get a contradiction by repeating the
argument above. Hence F(T; — Tp) — 0. O

Next we prove a rectifiability result whose proof uses the Besicovitch-Federer structure theorem
(Theorem 2.55) on the characterization of purely m-unrectifiable set in terms of projections onto
m-~dimensional subspaces of R". First we state the following consequence of Theorem 2.55, the
proof is left as an exercise.

Lemma 4.110. Let E C R™ be H™-measurable, with H™(E) < oco. Suppose that E is purely m-
unrectifiable. Then we can choose the coordinate axis such that H™(PrE) =0 for all I € A\(n,m).

From Theorem 4.68 we then obtain the following;:

Theorem 4.111. Let E be as above and let T € D,,(R™), with suppT compact and M(T) +
M(9T) < oo. Then pr(E) = 0.

Theorem 4.112 (Rectifiability theorem). Let T' € D,,(R"), with suppT compact and M(T') +
M(IT) < o0. If

B(x,
O™ (ur,x) = limsup 7/”( (2 T))
N0 W™

>0

for pr-a.e. x € R™, then there exist a countably m-rectifiable Borel set E and a Borel function
0: R"™ — [0,+00] such that @ =0 on R"\ E,

T(w) = /E {(w, TY0 dH™

for w € D™(R™) and, for H™-a.e. x € E, f(x) s a unit m-vector associated with the approzimate
(ur, m)-tangent space Vy € G(n,m) of E at x.
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Proof. Tt follows from Theorem 4.29 that there exists a Radon measure pur on R™ and a prp-
measurable mapping 7': R" — A (R"™) such that |T'(x)| =1 for pp-a.e. x € R" and

T(w) = /(T(x),w(x»du;p(x) Yw € D™(R"™).

Then main steps of the proof then are to establish that
(1) the set {z € R": ©*™(ur,x) > 0} is countably m-rectifiable,
(2) pr < H™_E, and that

(3) T: E — A,,(R") is a Borel orientation, i.e. T(x) = 71 A --- A Ty, for H™-ae. x € E, where
T1,...,Tm is an orthonormal basis of the approximate (up,m)-tangent space of E at x.

Using the Besicovitch covering theorem we can compare an arbitrary Radon measure p and ‘H™
(see e.g. [Si, p. 26], [Ma, 2.13|, [Ho, 5.23]). Indeed, for all A C R™ and A >0

(4.113) H"({z € A: 0 (u,z) > A\}) < Au(A) < X Hu(R™)
and
(4.114) p({z € A: 0 (u,z) < A}) < AH™(A).

From (4.113) and the assumption M(T") + M(9T) < oo we then obtain

(4.115) H"({z e R": O (up,z) = 00}) =0 =H"({z € R": 0" (usr, z) = 0o}.

This together with Theorem 4.68 then implies that

(4.116) pr({z € R™: ©*(up,z) = 00}) = 0 = por ({o € R™: ©*"(uar, z) = oo}

Notice that since projections Pr are 1-Lipschitz, H™(PrA) = 0 if H™(A) = 0. Define
E={z eR": " (ur,z) > 0}.

By (4.113), E has a o-finite H™-measure. To prove that F is countably m-rectifiable, let P C E
be purely m-unrectifiable. By Lemma 4.110 and Theorem 4.111, we get up(P) = 0, and hence
H™(P) =0 by (4.113). So, E is countably m-rectifiable. By the definition of E, up(R™\ E) = 0,
hence T'=TL_FE, that is

T(w) = /E(w,fﬂ,uT, Yw € D™(R™).

By (4.114) and (4.116), we then conclude that ur < H™LE, and therefore there exists, by the
Radon-Nikodym theorem, a Borel function 6: E — [0, 40c] such that

ur(A) = / OdH™
A
for every Borel set A C R™. Hence

T(w) = /E(w,f>0d7-[m, Vw € D™(R"™).
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It remains to show that T is associated with the approximate (ur, m)-tangent space V, of E at
H™-a.e. x € E. The approximate (ur, m)-tangent space at x is the m-dimensional subspace
Vi € G(n,m) such that for every § > 0

li{%r_muT(E N B(x,r)\ {y: dist(y —z,V,) < S|y — z|} = 0.

We write E as a disjoint union

o0
E:%uU@,
j=1

where H™(Ep) = 0 and E; C M;, M; being an m-dimensional C'-smooth submanifold of R™.
Then, in fact, V, = T)"E = T, M; for H™-a.e. x € ENM;. For a € R” and A > 0 we define (as in

Remark 2.51 (c)) 7g,0: R™ = R",
—a

Ly
Nan(y) = 3

Then for H™-a.e. x € F, we have
A M e (H™MLE) — H™LV,
as A \, 0. This follows from the area formula since
A g (HLE)(A) i= AT (HE) (1) A) = A" H™ (E N\ A)
E m m
= [ @A) = " (a0 A)
Eﬁnz’AA
= (H™nen)(A).

More generally, for H™-a.e. € E and for every Borel function ¢: E — [0, 400], with

/ YdH™ < 0,
E
we get
AT a(H™L)) — (2)H™LV,,
that is,
(4.117) AT / @ (122 ()Y (y)dH™ (y) = P(x) / pdH™
E Ve

for every ¢ € Co(R™). We apply (4.117) with v (y) = (dz!, T'(y))0(y) to obtain

A / wr (o)) (!, T(y) )0 (y)dH™(y) — 0(a){da!, T(x)) / wr(y)dH™(y)
E

—0(a) [ (i)’ Tw))an" ()
for H™-a.e. x € E and for all component functions w; of

w= Z wrdz! € D(RM).
Ie\(n,m)
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Next we observe that A~ is the Jacobian determinant of the mapping 1, x|M;: M; — 1, \M;
between m-dimensional C'-smooth submanifolds. Hence

M a @z M) (y) = A" (w|Mj) (122 (1)),

and therefore
/ () T()YaH™ () = 0) [ (), T())aH™ ).
ENM,; Va
We define S, € D,,,(R™) by
Su(w) = 0(x) / (). T(@) \dH™ (y), Vo € D™(R™),

and claim that 0S, = 0. For that purpose let w € D™ }(R") and R > 0 such that suppw C
B™(0,R). Then supp Myaw C B™(xz,AR), and therefore

|00 3T (W)| = 02 20T (w)] = ‘/ <wonx7A,Amdnx7Aa?> duar

< /\1_m||w\|oo,uaT(B(x, )\R)) -0

as A = 0 if @™ (usp, ) < oo which happens for H™-a.e. € E by (4.115). We have proven that
Ne D — Sy and Oy T — 0

as A — 0, and therefore 05, = 0. Finally, to show that T () orients V,, we may assume without
loss of generality that V, = R™ x {0}. For j € {m+1,...,n} and I = (i1,...,im-1) € A(n,m—1),
let
w(y) =y ey)dy’ =y o(y)dy™ A--- Ndyt,
where ¢ € C§°(R") is arbitrary. Then
do=d(y'o(y)) Ndy' = e(y)dy’ Ady' +ydp A dy'
and ¢/ = 0 in V, = R™ x {0}, and hence
0= 05,(w) = Su(dw) = 0(2) | (o) Tla)sdy’ ndy!)art™ )

x

= H(x)/ gp(y)<f(:17), ej Nep, A Aej,—1)dH™(y).

x

Since ¢ € C§°(R™) is arbitrary, we conclude that
<f($), ej A €]> =0
for every j € {m+1,...,n} and I = (i1,...,im_1) € A(n,m —1). As |T(z)| = 1, this proves that

T(z) = te1 A Aem.
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Remark 4.118. 1. We notice that the approximate (up, m)-tangent space V, coincides with
the approximate tangent space T)"FE for H™-a.e. € E. Hence T' = 7(E,0,T).

2. The compactness assumption on supp7’ is not necessary. It suffices only to assume that
My (T) + My (0T) < oo for all W € R™.

The next lemma is a step towards the compactness theorem.

Lemma 4.119. Suppose Tj € R,,(R"), 0T; € Ry—1(R"?), suppT; C K, with K C R™ compact,
and that
sup(M(T) + M(9T})) < oo
J
If Ty = T, then T € R, (R™).

Proof. We prove the lemma by induction on m. The case m = 0 is trivial. Suppose that the lemma
holds for rectifiable (m — 1)-currents with integer multiplicity. Let T; € R,,(R"), T; — T, be a
sequence satisfying the assumptions.

First we prove by using Theorem 4.112 that T is a rectifiable m-current. For that purpose we
will show that ©(ur,z) > 0 for ur-a.e. x € R™. For every z € R”, let p, be the 1-Lipschitz
function p;(y) = |y — z|. By Theorem 4.88 (3),

(4.120) (T}, part) € Ron—1(R™)

for a.e. t € R. Clearly,

(T, purt) = (OT))c (R™\ B(x, 1)) — O(Tj(R™\ Bz, 1))
(4.121) — (0T)(R™\ B(z,t)) — O(T(R™\ B(z,1)))
= (T, pu, 1)

Theorem 4.88 (2) and Fatou’s lemma imply that, for all 6 > 0,

/ lim inf M((T}, pz,t dt<hm1nf/ M((T}, pz,t))dt < lim inf M(T}),
é

and similarly,

/ lim inf M(9(T}, pa, >)dt:/ lim inf M((0T}, pa, t))dt
é é

]—)OO ]—)OO
< liminf M((OT}, ps,t))dt
j—)oo k)
< lim inf M(0T}).
j—)OO
Hence for a.e. ¢t € R there exists a subsequence such that
(4.122) SUP(M“Tjwl)xa t)) + M((T},, pa> >)) < 0.

Ji
The induction hypothesis together with (4.120), (4.121), and (4.122) imply that

(4.123) (T, prst) € Ron1 (R™)
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for a.e. t. On the other hand, since 97; — 0T, we get from the induction hypothesis that

(4.124) (0T).B(z,t) € Rp—1(R"),
and since
(4.125) (T, pz,t) = O(TLB(z,t)) — (8T).B(z, 1)

for a.e. t by Theorem 4.87 (1), we obtain
(4.126) AT B(z,t)) = (T, pg,t) + (0T ) B(x,t) € Rim—1(R™)

for a.e. t.

Next we want to reduce the proof to the case 9T = 0. Combining Example 4.74 (2) and (3)
we conclude that the cone over a rectifiable current with integer multiplicity is a rectifiable current
with integer multiplicity, that is

S € Ry(R™) = 098 = hy([[0,1] x S) € Ragp1(R"), h(t,z) = ta.

Hence 0 < 9T € R, (R™) since 9T € R,—1(R™) by the induction hypothesis. We also notice that
(by the homotopy formula)

(01 (8T)—T) =0(0<19T) — T =0T — 0 <1 9(dT) — T = 0.

Hence we may assume without loss of generality that 0T = 0. Indeed, otherwise we may consider
the sequence T; = T; — 0 < 0Tj € Ry, (R™), with properties

Tj=T;—0<0T; - T:=T-0<9T,
aT; = 0,
M(T}) < M(T}) + M(9Ty).

Define, for a fixed x € R", B
f@r) = pr(B(z,7)).
Using the assumption 0T = 0 we obtain from Theorem 4.87 (3) that

(4.127) M(@(TLB(x,r))) = M((T, px,r>) < lign\i(onf h_l(f(r +h) — f(r)) = f/(r)
for a.e. 7 > 0. Suppose then that @ (ur,z) < n < 1, so that

lim sup 1(s)

50 W,s™

<n
and that 5
1 d 1/m 1 1/m 1/m, 1/m
Z _ < = <
5 |5 () ar < 2 < wlfm
for sufficiently small § > 0. Hence we have
d 1/m 1 11 ’ 1/m_1/m
- = =fm <
—(Fm) = R ) < 2wl
or equivalently

(4.128) F1(r) < 2mel/mntm £ ()
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for all r in a subset of [0,d] of positive mj-measure. Suppose from now on that m > 1 (see
Remark 4.134 for the case n = 1). By the isoperimetric inequality (Theorem 4.99) applied to
(T B(z,1)) € Rin—1(R"), there exists S, € Ry,,(R™) with the properties

98, = (T B(x,r))

and

m—1

M(Sr)n%1 < CM(9(TLB(z,7)) < cnl/mM(T\_B(:n,r)) "o
where also (4.127) and(4.128) were used. Thus there exists a sequence r; N\, 0 such that
98, = 0(TLB(z, 1)) € Ryp—1(R™)
and

7

M(S,,) < enm T M(TLB(,1;)).

Let then C C {z: ©"(ur,x) < n} be compact. By Vitali’s covering theorem for the Radon
measure ur, we find, for all ¢ > 0, disjoint balls B]Q = B(x;,r;) such that z; € C, r; < o,

(4.129) pr(C\|JB?) =0,

j
(4.130) BJQ C {x: dist(z,C) < g},
(4.131) M(S?) < T M(TLBY?)

for some SJQ € R (R™) with
957 = d(TLBY).
By the homotopy formula, with h(t,z) = tx + (1 — t)z;, we then have
S{ —T.Bj = d(z; < (8§ - TI_B]-Q))
and hence by (4.46) and (4.131)
|(S7 = TuBf)(w)| = |(z; < (S§ = TLBY)) (dw)|

(4.46)
< oM(S? — TUB) |dwl|oc

1
< co(nm=T + L)M(TLBY)||dw| oo
Since the balls Bf are disjoint and M(T") < oo, we get

(4.132) Z(S]@’ —~TLBf) =0 aso— 0,

J

T o _ i 0
T.C = lim > ToBf = lim > S;
J J
by (4.129), (4.130), and (4.132). It then follows that
_ . . Q . . Q
ur(C) =M(TLC) < hrgn_)lg)lfM(Z Sj) < hlgn_}élfz M(S7)
J J

and so

1 .. 1
< liIQIl_jélf cnm—1 Z M(TLBjQ) < hlgn_:élf cnm—1 Z pr(BY)
j j
.. —1_
= hlgn_:élf cnm—1 ,uT(U Bf)
j

1
= Cnm—l /LT(C)
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If cnﬁ < 1, we obtain p7(C) = 0. Hence
0" (ur,z) >0

for pr-a.e. € R™. By Theorem 4.112, T = 7(FE, 0, f), where F£ C R™ is a countably m-rectifiable
Borel set and 6: E — [0, 00] is a Borel function such that

T(w) = / (w0, TYOAH™, Vo € DM(R).
E
It remains to show that 6 is integer valued. Then H"(FE) < oo since
M(T) = / OdH™ < oo.
E

As in the proof of Theorem 4.112, we have
NeotD — 0(x)[Vy] asr —0

for H™-a.e. x € E, where 1, ,(y) = (y — x)/r and V, = T;"E is the approximate (p7,m)-tangent
space of E at z. Fixing such z, we may assume that

Ve =R™ x {0} =R™.
Let P: R™ — R™ be the projection P(z,y) = z. Since
Py (0(1z4T5)) = Py (12,r(9T})) € Rm—1(R")
by the assumption 07 € Rp,—1(R™) and Example 4.74 (3), and since
Py(0(na,4T;)) = By (0m.r4T)),

we have
OP; (Mo, T) = Py(0(Ne,riT)) € Rin—1(R")

by the induction hypothesis. We conclude (see Lemma 4.133 below) that
Pti (nx,rﬁT) S Rm(Rm)

By Theorem 4.65 there exist integer valued functions g, € BV (R™) such that

P; (U:c,rtiT) (w) = / ogr dH™ = / (wyeg A+ Nep)gr dH™

for w = @dx! A--- Adz™ € D™(R™). But
P*(w) = (po P)dz' A--- A dz™ € D™(R™),
and so

[ o™ = T (Pw) = 6@)R(Pw) = 0(a) [ "

m

as r — 0. Since all g,’s are integer valued, we conclude that (z) € Z which proves the lemma. [

Lemma 4.133. If S € D,,(R™), supp S is compact, and 9S € Rp—1(R™), then S € Ry, (R™).
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Proof. Since 0 <S € Dy, 41 (R™) = {0}, we have
s=0<954+0(0<85)=0<38S = h([[0,1]] x 05) € Ryn(R™)
by Example 4.74 (2), (3). O
Remark 4.134. In the case m =1 (in Lemma 4.119), we have
(T B(z,t)) € Ro(R")
for a.e. ¢ by (4.126). Assuming 9(TB(z,t)) # 0, we get a contradiction
1 <M(O(TB(x,r))) < f'(r) <4np <1

by (4.127) and (4.128), with n < 1/4. Hence O(T.B(z,t)) = 0 for a.e. r and we may take S, =0
(and thus SJQ = 0in (4.131)). It follows that up(C) = 0.

Theorem 4.135 (Boundary rectifiability theorem). Let T' € R,,(R™) with suppT compact and
M(9T) < oo. Then OT € Rp—1(R™).

Proof. By the polyhedral approximation theorem 4.102, there exists a sequence Py € Pp,(R™) of
the form

Py = Z O‘ﬂ[ﬂ-]’ ar € Z,

ﬂeﬁgk m

such that P, — T and 0P, — 0T as k — oo. Since 0P € R—1(R™), and 0(0P;) = 0, we conclude
from Lemma 4.119 that
oT = liin 0P, € Ry—1(R"™).

O

Theorem 4.136 (Compactness theorem). Suppose that T; € R,,(R™), with supp(T;) C K and
K C R" compact, and that
sup{ M(T}) + M(9T})} < oo.
j

Then there exist a subsequence Tj, and T' € R, (R™) such that Tj, — T.

Proof. By Theorem 4.135, 0T; € Ry,,—1(R™) and the claim then follows from Lemma 4.119. O

5 Mass minimizing currrents

In this final section we discuss briefly mass (area) minimizing currents that provide a tool to attack
the general Plateau problem. In particular, we prove the existence of a mass minimizing integer
multiplicity rectifiable m-current given a rectifiable (m — 1)-cycle (of integer multiplicity).

Definition 5.1. An m-current S € R,,(R") is mass minimizing if
M(S) < M(T)

for every T' € R, (R™) with 0T = 95S.
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Theorem 5.2 (Existence theorem). If T' € Ry,—1(R™) with 0T = 0 and supp(T) is compact, there
exists Sy € Ry (R™) such that Sy =T and

M(Sp) = min{M(S): S € R,,(R"), 9S =T}.
Hence Sy is mass minimizing.

Proof. By the isoperimetric inequality (Theorem 4.99) there is a m-current S € R,,(R"™) with
supp(S) compact such that 9S = T and

M(S)™ M+ < ¢, W M(T) < oo.

Hence the set S = {S € R,,(R™): 0S = T} is non-empty (in fact, also 0 <7 would do) and we
may find a minimizing sequence S; € R, (R™), 05; = T, such that

M(S;) = I :=inf{M(S): S € R,,(R"), 90S =T}.
Let R > 0 be so large that supp(T') C B(O,R) and let f: R — B(O,R),

fa) = {Rm/|:n|, if 2] > R;

x, if || < R,

be the 1-Lipschitz retract onto B(0, R). Then M(f;S) < M(S) for every S € D,,,(R") by (4.45).
Hence we may assume that supp(S;) C B(0, R) for every j. Moreover

Sl;p{M(Sj) + M(@Sj)} = sgp{M(Sj) + M(T)} < 0.

By the compactness theorem (Theorem 4.136) there exists a subsequence Sj, and Sy € R,,(R")
such that S;; — Sp. Then T' = 95, — 050, and therefore 95y = T and

I <M(Sp) < liminf M(S;,) = 1.
Ji— 00
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6 Appendix

6.1

Proof of Riesz’ representation theorem 1.62

First we prove the auxiliary lemma (Lemma 1.63).

Proof of Lemma 1.63. (a) Write § = dist(K,0V). Because K is compact, it follows that ¢ > 0.

Then the function

f(z) = max(0,1 — %dist(w, K))

satisfies the conditions of part (a).

For every x € K there exists a ball B(x,r;), with B(z,2r,) C V; for some j. Because K is
compact, it can be covered by finitely many such balls, i.e.

k
K C U B(zi,rs,).

i=1

Let A; be the union of those closed balls B(x;,7,) for which B(z;,2r,,) C V;. Then
A;CV; and K cC (A4
j=1
By part (a) we choose functions g; € Cp(R") s.t.
x4; <g; <1 and supp(g;) CVj.

Then define

hl =J41,
ho = (1 — g1)g2,

hm = (1 - gl) t (1 - gm—l)gm-
Then clearly
0<h;j <1 and supp(h;)CVj.

m

Induction with respect to m shows that > 7" hj =1—(1—g1)--- (1 — g;). Furthermore,
m
Xk <Y hj <1,
j=1

because if z € K, then z € A; for some j and consequently 1—g;(z) = 0 and > 7", hj(z) = 1.
U

Remark 6.2. In the case of a locally compact Hausdorff space Lemma 1.63 is (a version of)
Urysohn’s lemma.
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Proof of Riesz’ representation theorem 1.62. Define
fi(0) =0

and set
(V) =sup{A(f): f € Co(R"), 0 < f <1 and supp(f) C V}

for every open set V' C R™. Then it follows from the definition that

(6.3) 0 < (V1) < a(Va),
if V4, Vo C R™ are open and V; C V5.
Next define
(6.4) a(A) =inf{a(V): ACV CR", V open}

for all A C R™. We show that fi is a metric outer measure. Then all Borel-sets of R" will be
i-measurable by Theorem 1.18.

1. Monotonicity
(A1) < (A), if Ay C Ay,

follows directly from (6.3) and the definition (6.4).

2. We prove first subadditivity for open sets. In other words, if V; C R", j € N, are open, then
[o¢] o
(6.5) AU Vi) < 3 av).
j=1 j=1
To prove this let f € Co(R™) s.t. 0 < f < 1 and supp(f) C U‘;ile Because of the
compactness of supp(f)

supp(f) C | J V;-

=

1

j
Write K = supp(f). Lemma 1.63, part (b), implies that there exist functions h; € Cp(R"™)

with -

0<h; <1, supp(hj)CV; and xg < Zhj <1.

j=1
Then
F=Y_hif,
j=1

supp(h;f) CV; and 0<h;f<1 Vji=1,...,m,

and hence

Af) =D A f) <Y aVy) < D alV;).
j=1 j=1 j=1
Taking sup over all “admissible” functions f in the definition of ﬂ(UjVj) we obtain (6.5). Let
then A; C R",j € N, be arbitrary sets. Fix € > 0 and choose open sets V; C R" s.t. 4; C Vj
and

a(Vy) < i(Ay) +e/2.
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Then

which implies subadditivity for all sets by letting ¢ — 0. We have proved that ji is an outer
measure.

3. Let Vi, Va2 C R™ be open sets and dist(Vi, V) > 0. Let further f; € Co(R") s.t. 0 < f; <1
and supp(f;) C Vj, 7=1,2. Then 0 < f; + fo <1 and supp(fi + f2) C Vi1 U Vs, and hence

A(f1) +A(f2) = A(f1i + f2) < (Vi U Va).

Taking sup over all admissible functions f; and fo we obtain

(6.6) AV + i(Va) < (Vi UVR) S (VA) + fu(Va).

Let then A, Ay C R™ be arbitrary sets with dist(A;, A2) > 0. Fix € > 0 and choose an open
set VCR"st. AyUAy CV and

(V) < i(A1 U Ay) + e,

Choose then open sets V; C R", j =1,2,s.t. A; C V; and dist(Vy, V2) > 0. (We may choose
for instance V; = {z € R": dist(z, 4;) < 1 dist(A;, A2)}.) Now 4; C V; NV and
dist(VinV,V,NV) > 0,

and hence by (6.6)

(A1) + i(A2) < p(Vin V) + (V2 NV)
(Vn(Viula))
(V)
ﬂ(Al UAg) +e.

i
i

IN N
=

Letting now € — 0 we see that [i is a metric outer measure.

4. We prove next that fi is locally finite: If B(x,r) C R™, then choose fy € Co(R™) s.t. 0 < fo <1

and

XB(z,r) < fo.
Then f < fo for all functions f admissible in the definition of ,&(B (z, 7‘)) Because A(fo—f) >
0, then

A(f) < A(fo).

Taking sup over all such functions f we obtain
i(B(z,r)) = sup A(f) < A(fo) < 0.

Corollary 1.32 implies that
= il Bor(R")

is a Radon measure.



92

Geometric Measure Theory

5. We must still show that

A(f)Z/nfdu

for all f € Cyh(R™).

Let f € Cp(R™). We may suppose that f > 0, because f = f, — f_, where fi = max(0, f) €
Co(R™) and f_ = max(0, —f) € Cop(R™). Fix e > 0 and set for all k € N

fie(z) = max((k — 1)e, min(f(x), ke)) — (k — 1)e.

A

ke
(k — 1) [ N

Clearly 0 < fr < e and f; € Cy(R") for all k. Because fr, =0, if (k—1)e > || f|loo, then

F=>fe

k=1

for some m € N. Let K (k) = {x € R": f(z) > ke}, k € N and K(0) = supp(f). Then

(6.7) EXK () < Jk < EXK(k—1)

and hence

(6.5) Y n(E®) <> [ fedn= [ Fau<edu(K(e- ).
k=1 k=17R" R k=1

On the other hand, if § > 0, then by (6.7)

oS>

in some neighbourhood W of K (k). In particular,

S0+ 0z g

for every function g € Cy(R™) admissible in the definition of (7). Thus
A((L+8)i) > en(W) > en(K (k).

and further
A(fr) > ep(K(k))

letting § — 0. In the same way, fi/c is admissible in the definition of u(V) for every
neighbourhood V' of K(k — 1), and hence A(f;) < eu(V'). Then by the definition

A(fr) < ep(K(k—1)).
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Combining these inequalities we obtain

(6.9) Y oen(K(k) <A(f) <ed p(K(k—1)).
k=1 k=1

The inequalities (6.8) and (6.9) imply that

Letting ¢ — 0 we see that

and thus p is the desired Radon measure.

6. Finally, we prove the uniqueness of u. Let u also be a Radon-measure, for which

A(f) = Jdu

Rn
for all f € Cp(R™). Let V. C R™ be open and bounded. By Lemma 1.63 there exists a
sequence f; € Co(R") s.t.

0 < fi(z) < folz) <--- < fi(x) = xv(2)
for all x € R™. By the Monotone Convergence Theorem
(V) = tim [ ;i
hm A(f])

= lim / fidu
j—)OO

Because Bor(R") is a o-algebra spanned by open and bounded sets, then 1 = u (in Bor(R™)).
O

6.10 Proof of Theorem 1.67
Proof. (a) Let K C R™ be compact and V' C R™ be open s.t. K C V. Choose by part (a) of
Lemma 1.63 a function f € Co(R™) with xx < f <1 and supp(f) C V. Then

wV) = [ fdu
R’rl

hm fdug
RTL

> lim sup pg(K).

k—o0

Because this holds for all open V' O K, the claim in part (a) is proven.
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b) If V C R™ is open, then let K C V compact. In the same way as above we obtain
( y
w(K) < liminf pg (V).
k—o0
Because p is a Radon measure,
w(V) =sup{u(K): K CV compact},

and part (b) is proven.

6.11 Proof of Theorem 1.69

For the proof we need the following auxiliary result.

Lemma 6.12. The norm space (Co(R™),||-||), where || f|| = sup{|f(x)|: & € R"}, is separable, i.e.
there is a countable dense set F = {f;}72, C Co(R"). In other words, if f € Co(R™) and € > 0,
then ||f — f;|| < e for some f; € F.

Proof. (Exerc.)

Proof of Theorem 1.69. Suppose first that

(6.13) sup ux(R") = A < oc.
k

Let {f;}32; be a dense set in Cp(R™). It follows from the assumption (6.13) that

{/ frdug: k’EN}
RTL
is a bounded subset of R, and hence there is a subsequence (u}) of (u) s.t.

1 k—oo
frdpy —— a1
RTL

for some a; € R. Choose inductively for all j > 2 a subsequence {ufg} of the sequence {,ui_l} s.t.
i k—
/ Fj dpj, —= a;
Rn
for some a; € R. Then the diagonal sequence {uf}%° | satisfies

(6.14) lim / fiduf = a;
Rn

k—o00
for all j > 1. Let L be the vector space spanned by the functions f;,
m
L= {g:Z)\jij )\j € R, mGN}.
j=1

Set

A(g) = Z/\jaj7
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when

g = Z )\jfj.
J

Then by (6.14) we see that
Alg) = lim [ gdpf

k—oo Jrn

for all g € L. In particular, A is well defined (i.e. A(g) is independent of the particular choice of
the linear combination for g), positive and linear functional in L. Moreover, it follows from (6.13)
that

(6.15) [A(g)| < Allgl

for all g € L. If f € Cy(R™) is arbitrary, then choose a sequence (h;), hj € L, s.t.

If = hyll ==+ 0,

and set

A(f) = lim A(h;).

Jj—00
Then it follows from (6.15) that A is well defined in Co(R™) (A(f) independent of the choice of the

sequence (h;)) and (6.15) holds for all g € Cy(R™). Furthermore, A is a positive linear functional
in Co(R™). In fact, if f >0 and ||f — h;|| — 0, then liminf;_,,(minh;) > 0, and hence

A(f) = lim lim [ hjduf >0,

j—o0k—oo Jrn

because [ h; d,u’,z > Amin(0,min hj). By Riesz’ representation theorem there exists a Radon-
measure f s.t.

A(f)= [ fdu

Rn

for all f € Cy(R™). We prove next that ,uﬁ — . Let e > 0. For f € Cyp(R™), we choose g € L such
that ||f — g|| < 55. Then for large values of k

A= [ raikl <10 =9l + |80 - [ gkl +] [ (0= pauk

<e
<Alf —gll +e+Alf -4l
< 2¢.

Therefore uﬁ — p. Finally, we give up the hypothesis (6.13). From the assumption that

sup pg(K) < oo
k
for all compact K C R™ and the above argument there follows that for every m € N there exists a
subsequence (i) of (uy) s.t. {u*: k € N} € {u"': k € N} and

m

upt B(0,m) — v™,
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where v™ is a Radon-measure with supp(¥™) C B(0,m). Then for the diagonal sequence ¥ there
holds
Pk B(0,m) — ™

for all m € N. Thus v"™LB(0,¢) = v*, when ¢ < m. Therefore we may define a Radon-measure
in R" setting

uw(E) = v (ENB(0,1)) + Z V™ (EnN (B(0,m)\ B(0,m—1))), E € Bor(R").

m>2

Because supp(f) C B(0,my), it follows that
fdp= [ fdv™ = lim [ fduj,
R R k—oo Jrn

and hence ,u’,z — U O



