FOURIER ANALYSIS. (fall 2016)

SKETCHES OF SOLUTIONS FOR THE REVIEW PROBLEM SET

For questions or more details, contact Olli Hirviniemi.

Exercise 1. Assume that $f, f_k \in L^2(-\pi, \pi)$ for $k \ge 1$ and $\lim_{k\to\infty} ||f_k - f||_{L^2(-\pi,\pi)} = 0$. Show that for each $n \in \mathbb{Z}$ it holds that $\widehat{f}_k(n) \to \widehat{f}(n)$ as as $k \to \infty$.

Solution 1. Plancherel's formula states that for $g \in L^2(-\pi, \pi)$

$$\frac{1}{2\pi} \|g\|_{L^2(-\pi,\pi)}^2 = \sum_{n=-\infty}^{\infty} |\widehat{g}(n)|^2.$$

The convergence now follows from

$$|\widehat{f}_k(n) - \widehat{f}(n)|^2 \le \sum_{n=\infty}^{\infty} |\widehat{f}_k(n) - \widehat{f}(n)|^2.$$

- **Exercise 2.** Let f be a 2π -periodic function such that f(x) = 0 for $x \in [-\pi, 0)$ and f(x) = 1/(1+x) for $x \in [0, \pi)$. Show that the Fourier series of f does not converge absolutely.
- Solution 2. If we assume that the Fourier series converges absolutely, then we see that the series

$$\sum_{n=-\infty}^{\infty} \widehat{f}(n) e^i nx$$

converges uniformly to f. But then f is a uniform limit of continuous functions, so it must be continuous. But we see that f is not continuous at 0, so the Fourier series cannot converge absolutely.

Exercise 3. Let $f : [-\pi, \pi) \to \mathbb{R}$ be a real-valued 2π -periodic function such that all the Fourier coefficients of f are real-valued. Show that f is even, i.e. that f(x) = f(-x) for (almost) all $x \in \mathbb{R}$.

Solution 3. Compute the Fourier coefficients of f.

$$\widehat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} \, dx = \frac{1}{2\pi} \left(\int_{-\pi}^{\pi} f(x) \cos(nx) \, dx - i \int_{-\pi}^{\pi} f(x) \sin(nx) \, dx \right)$$

As we assume that the Fourier coefficients are real and f is real-valued, the rightmost integral must vanish for every n. From this we get that $\hat{f}(n) = \hat{f}(-n)$ as cosine is an even function. This implies that f is even.

Exercise 4. Assume that if $f, g \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$ and denote their convolution by h := f * g.

- (i) Show that $h \in L^{\infty}(\mathbb{R}^d)$.
- (ii) Is it always true that $\hat{h} \in L^{2016}(\mathbb{R}^d)$?

Solution 4. (i) We use the Cauchy-Schwartz inequality in $L^2(\mathbb{R}^d)$ to compute that for any $x \in \mathbb{R}^d$ we have

$$|h(x)| = \left| \int_{\mathbb{R}^d} f(y)g(x-y) \, dy \right| \le \|f\|_{L^2(\mathbb{R}^d)} \|g\|_{L^2(\mathbb{R}^d)} < \infty.$$

Therefore $h \in L^{\infty}(\mathbb{R}^d)$.

(ii) We know from Fubini's theorem that the convolution of two L^1 -functions is L^1 . This means that $h \in L^1(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)$. If we set p = 2016/2015, and denote $E = \{x \in \mathbb{R}^d : |h(x)| \leq 1\}$, then

$$\int_{\mathbb{R}^d} |h(x)|^p dx = \int_E |h(x)|^p dx + \int_{\mathbb{R}^d \setminus E} |h(x)|^p dx \le \int_E |h(x)| dx + m_d(\mathbb{R}^d \setminus E) ||h||_{L^{\infty}(\mathbb{R}^d)}^p < \infty.$$

Now we see that $h \in L^{\frac{2016}{2015}}(\mathbb{R}^d)$ and we know by interpolation that the Fourier transform takes $L^{\frac{2016}{2015}}(\mathbb{R}^d)$ to $L^{2016}(\mathbb{R}^d)$. This shows that $\hat{h} \in L^{2016}(\mathbb{R}^d)$

Exercise 5. Denote $f_r(x) = e^{-rx^2}$ for r > 0. Given $r_1, r_2 > 0$, determine the convolution $f_{r_1} * f_{r_2}$.

Solution 5. We will determine the Fourier transform of the convolution. Recall that

$$\widehat{f}_r(\xi) = \sqrt{\frac{\pi}{r}} e^{-\frac{x^2}{4r}}.$$

and that $\widehat{g * h}(\xi) = \widehat{g}(\xi)\widehat{h}(\xi)$. This gives us

$$\widehat{f_{r_1} * f_{r_2}}(\xi) = \widehat{f}_{r_1}(\xi)\widehat{f}_{r_2}(\xi) = \sqrt{\frac{\pi^2}{r_1 r_2}} e^{-x^2 \left(\frac{1}{4r_1} + \frac{1}{4r_2}\right)}.$$

From this we can solve

$$f_{r_1} * f_{r_2}(x) = \sqrt{\frac{\pi}{r_1 + r_2}} e^{-x^2 \frac{r_1 r_2}{r_1 + r_2}}.$$

Exercise 6. Let $f \in L^1(\mathbb{R}^d) \cap C(\mathbb{R}^d)$ and assume that $\widehat{f}(\xi) \ge 0$ for all $\xi \in \mathbb{R}^d$. Prove that then $\widehat{f} \in L^1(\mathbb{R}^d)$.

Solution 6. Let $\phi \in C_c^{\infty}(\mathbb{R}^d)$ have $0 \le \phi(x) \le 1$ for all $x \in \mathbb{R}^d$, $\phi(x) = 1$ for $|x| \le 1$ and $\phi(x) = 0$ for $|x| \ge 2$. Define $\phi_n(x) := \phi(x/n)$.

Now for any n

$$\int_{B(0,n)} |\widehat{f}(\xi)| \, d\xi \le \int_{\mathbb{R}^d} \widehat{f}(\xi) \phi_n(\xi) \, d\xi = \int_{\mathbb{R}^d} f(x) \widehat{\phi}_n(x) \, dx = \int_{\mathbb{R}^d} f(x) n^d \widehat{\phi}(nx) \, dx \to Cf(0) < \infty$$

where the limit is because $n^{d} \hat{\phi}(nx)$ gives a sequence of good kernels up to constant factors. As the sequence dominating $\int_{B(0,n)} |\hat{f}(\xi)| d\xi$ has a finite limit, we get that $\hat{f} \in L^1(\mathbb{R}^d)$.

- **Exercise 7.** What of the following claims are true? Give justification for your answer (you may use all the results of the lectures).
 - a) Distribution $|a|\delta_a$ tends to zero in the space $\mathcal{S}'(\mathbb{R}^d)$ as $|a| \to \infty$.
 - b) If $f : \mathbb{R}^d \to \mathbb{R}$ is bounded and compactly supported, then $\hat{f} \in L^2(\mathbb{R})$.
 - c) If the distribution $T \in \mathcal{S}'(\mathbb{R}^d)$ is supported at one point $a \in \mathbb{R}^d$, then \widehat{T} is a bounded function.
 - d) If $g \in \mathcal{S}(\mathbb{R})$ and g(0) = 0, then in the metric of $\mathcal{S}(\mathbb{R})$ one has that $g(nx) \to 0$ as $n \to \infty$.

Solution 7. a) This is true. For any $\varphi \in \mathcal{S}(\mathbb{R}^d)$ and $x \in \mathbb{R}^d$ we have $(1 + |x|^2)|\varphi(x)| \le p_1(\varphi)$, so

$$|\langle |a|\delta_a,\varphi\rangle| = |a||\varphi(a)| \le \frac{|a|p_1(\varphi)|}{1+|a|^2} \to 0$$

as $|a| \to \infty$.

b) If f is not measurable, then \hat{f} is not defined, making the claim untrue in that case.

If we assume f to be measurable, then this is true. In this case, the square of L^2 -norm of f is bounded by $m_d(K) ||f||^2_{L^{\infty}(\mathbb{R}^d)}$, where K is the support of f. Then $f \in L^2(\mathbb{R}^d)$, so $\widehat{f} \in L^2(\mathbb{R}^d)$.

c) This is false. Take
$$T = \frac{\partial}{\partial x_1} \delta_0$$
. Then T is supported in a single point, but $\widehat{T} = ix_1$ is not a bounded function.

d) This is false. Let $g \in \mathcal{S}(\mathbb{R})$ have g(0) = 0 and g'(0) = 1. Then if we denote $g_n(x) = g(nx)$, we have

$$p_1(g_n) \ge g'_n(0) = n \to \infty.$$

As g_n is not a bounded sequence in the seminorm p_1 , it cannot converge in that seminorm and hence not in $\mathcal{S}(\mathbb{R})$.

- **Exercise 8.** Let $\lambda \in \mathcal{S}'(\mathbb{R})$ and assume that ϕ_n are smooth compactly supported functions such that $\phi_n \to \lambda$ as $n \to \infty$ in the sense of distribution. Assume that we know that $\lim_{n\to\infty} \phi_n(x) = 0$ for every $x \in \mathbb{R}$. Does it follow that $\lambda = 0$?
- **Solution 8.** It does not follow that $\lambda = 0$. Let ϕ be a smooth compactly supported function with $\phi(0) = 0$ and $\int_{\mathbb{R}} \phi(x) dx = 1$. Set $\phi_n(x) = n\phi(nx)$. Now from previous exercises we know that $\phi_n \to \delta_0$ in the sense of distributions, and we see that $\lim_{n\to\infty} \phi_n(x) = 0$ for any x.