FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 9

Exercise 1. Determine the fundamental solution of Laplacian in 1-dimension, i.e. find £ €

S'(R) so that (%)QE = 0.

Solution 1. Recall the Heaviside step function

H(z) = X[0,00)-
As distribution, we know that
d
—H(z) = 6.
dx (z) 0

It now suffices to find an absolutely continuous function whose derivative is Heaviside
function plus some constant: this is an ordinary differential equation and one possible

solution is
E(x) = |z|/2.

Exercise 2. Use the Poisson summation formula to prove

Z 1 1 + 6_2Tr
=T
1 4 n? 1—e2m
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Solution 2. Let us recall from the previous set of exercises that if f(z) = e~#!, then

fio) = g

By the Fourier inversion formula we have also that
F (f) (x) = ome~ 17l
We want to apply the Poisson summation formula on the function f We must check that

|J/C\(§)| < C(l + |f|)_1_E and ‘}' <J/”\> (x)‘ < 0(1 + |€|)—1—e

for some constants C,e > 0. The second condition holds for every € > 0 since the expo-
nential function grows faster than any polynomial. The first condition works for e = 1

because of the estimate 5 1

2l _ - .
T e =
Thus we can apply the Poisson summation formula to get that

22 1 +1712 = %f(n) = Z}— (f) (2mn) = ZQ?TG_W.

neL nez nez




The sum on the right hand side is a combination of two geometric sums and thus easy to
compute. In the end we get that

Z 1 1 + 672#

=T .
1+ n? 1—e2m
nel

Exercise 3. (i) Suppose A : R? — R? is an invertible linear map (we denote by A also its
matrix). If f € LY(R?), define g(z) = f(Ax). Show that

~re\ 1 T A-INT
9O = ey (A0,

where (A™1)7 is the transpose of the inverse of A.

(ii) A function f € L*(R?) is radial if f(x) depends only on |z|. Use (i) to show that for
a radial function, the Fourier transform is radial.

(iii) Show that the result in (ii) holds also for every radial f € L*(R?) in a sense that
the Fourier transform f € L?(R?) has a radial representative.

Solution 3. (i) We compute via the change of variables formula that

56 = [ e Ao

1 e A—1
— —i&- A7 d
[det A o © fz)de
1 (A-1\T
— —i(A~H) ¢ d
[det A[ g © J(x)d

1 ~
= ——f((AHT¥).
e (7O
We also used the property of the matrix transpose that ¢ - A~z = (A71)T¢ - x.
(ii) Let f be a radial L' function. Then f(Az) = f(z). By the first part we get that

Y 1 TriA-INT &N _ Fr A-INT
JO) = rqaa /(A9 = Fae),

since det A = 1. Choosing A = (B~!)T for some other arbitrary rotation B gives that

~

(&) = f(Be)

for every rotation B. Since f is also continuous, it must be a radial function.

(iii) Let f be a radial L? function. Then fi = f - Epo,a is also radial and we have that

= T



in L2. The functions f]\\/[ are radial by (ii) so we now want to conclude that fis also radial
(so we want to prove that the L?-limit of radial functions is radial).

' Warning !! It is not enough to prove that f(Bﬁ) = f(é’) for every rotation B (as L*-
functions). The problem comes from the fact that this only proves that for every rotation

B, the identity f(BS ) = f({' ) holds pointwise almost everywhere. The set of zero measure
in which this identity fails might depend on B! Thus it is not immediately obvious why
there is also a radial representative for our function f in its equivalence class in L?. Let
us look for a different approach.

Our original proof is based on the Lebesgue set:
N = {z € R" : z is a Lebesgue point for f}.
Indeed, if z,y € N and |z| = |y|, then
- 1 .
f(z) =lim ——— f(2)dz

r—0 ’B(J} T’)| B(zr)

= lim lim
r—0 M—oo | B(x, 1) |/” Julz

_ll—r%ﬂ}linoowa: T) |/yr fulz
1
= lim ———— f(z)dz
r=0 | B(y,7)| J .

= fly).

Thus f is radial in the Lebesgue set. The complement of the Lebesgue set is of measure
zero, so we can redefine f in the complement so that it is radial everywhere.

Another proof for the same fact is to choose a subsequence of fz\\4 that converges to J?poigt—
wise almost everywhere. This is possible as proven in the real analysis course. Since f is
almost everywhere a pointwise limit of radial functions, it must have a radial representative
in L2,

Exercise 4. Show that if F is a fundamental solution of the differential operator (with constant
coefficients) P(9), then E + H is also a fundamental solution, if H € S'(R?) satisfies
P(0)H = 0.Verify that actually all fundamental solutions of P are obtained by this manner.

Solution 4. As the considered differential operator is linear, we see that for any ¢ € S(R?)
(PO)E + H),p) = (PO)E, ¢) + (PI)H, ) = (b, ) +(0,9) = (0o, ).

Next assume that E;, Ey are two fundamental solutions. Then Ey = E; 4+ (Ey — Fy) and
we have for any ¢ € S(R?)

(P(O)(Ey — En), @) = (P(0)Ey, ) — (P(9)Er, ) = (o, 0) — (b0, ) = 0.

Therefore all fundamental solutions can be obtained from one by adding H € S'(R?) that
satisfies P(0)H = 0.



Exercise 5. Recall that we proved that at the function (an example of Weierstrass functions)

f(z) = i 272 cos(2x)

is not differentiable at any point. Show in any case that in the sense of distributions we
have

f(x)=— i 22 gin(2"x) !
n=1

Solution 5. Define N
v = Z 2712 cos(2"x).
n=1

Then the fy are continuous functions and fy — f uniformly as n — oo. The uniform
convergence follows from

[f@) = fu@)] < Yo 272 =0
n=N+1

Thus fy — f in the sense of distributions, which implies that fj — f’ in the sense of
distributions. Thus

N N
falz) = =3 i2na2sin' = =3 9" 2sin' T f
n=1 n=1

in the sense of distributions, which is what we wanted to prove.
Exercise 6. Let A= {(z,y):2 >0,y >0} U{(z,y): 2 <0,y <0} C R

Show that the characteristic function x4 is a fundamental solution

for the differential operator P;(0) = %8182.

Solution 6. We need to check that in the sense of distributions the following identity holds:

P1(8)XA - 50.



This is just a simple calculation as follows:

(Pi(@)%ag) = (o 50m0)

= / /A 9uy(2, y)dady

1 0 0 1 0 0
= 5/ / gxy(as,y)dwdy+§/ / Gay(x, y)dady
0 0 —00 J —o0
1 o0

1 0
= 5/ —gy(O,y)dy+§/ 94(0,y)dy
0

4(0,0) | ¢(0.0) h
) + 2
:<5079>-

Exercise 7. (i) If 0 < v < d, show that the function

f(z) = % r € R\ {0},

e

determines a tempered distribution, by writing it as a sum of two functions, one belonging
to L'(R%) and the other to LP(R?) for a suitable p > 1. If v > d/2, show that one can
choose p = 2.

(ii)  Prove that

for some constant c(d, 7).

Solution 7. (i) If 0 < v < d, we write that
1 1
K@) = Xaen s + X

The first part is in L' since by a spherical change of variables we find that

1 1
/ —dx = C/ —rd=Lar,
lz|<1 |x”y o 77

and since the exponent d — vy — 1 is greater than —1, this integral is finite. For the second
part to be in LP, the integral

1 1
/ dx = C/ —rd=tar
o>1 | [P A

must be finite. Thus we get the inequality d — py — 1 < —1, which is true when p > d/7.
If v > d/2, we see from this that one may choose p = 2. Thus in general f, is a sum of an
L'-function and an LP-function, and hence defines a tempered distribution on R¢.
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(ii) Case v > d/2. In this case f, is a sum of an L'-function and a L?-function. Thus we

find that the Fourier transform ﬁ is also a function (it is a sum of an L*>-function and a
L*-function). Note that the function f, has the property that

fy(te) =t77f,(x) for every t > 0 and every x.
Let g € S(RY). Then

Thus ﬁ(x/t) = td”ﬁ(x) in the distributional sense. The above formula can also be
generalized to functions g in L' n. L? by approximation. We want to conclude that there is
a representative of the function f., (which is defined almost everywhere) that also satisfies

the identity R R
Fyla/t) =t f, () (1)
at every point x € R". For this we again use the Lebesgue set
N = {x € R" : z is a Lebesgue point for J/C\v}

If x € N and z/t € N, then a computation similar to the one in Exercise 2(iii) gives that

0
fo(z/t) = rl_I>%|B1}/t7“|/:c/tr

1 —d t
rli%m/m/m) Fy(z 1)z

S )

d

. t _
=18 oy fW”XB““W
lim F(2)d
= 11m ——— z)|az
r—=0 ’B(I’,tr)’ B(z,tr) !
:td_vﬁ(x).

The computation is valid since Xp( ) (2) € L' N L2 Since the Lebesgue set N contains
almost every point in R%, we can redefine f outside of N so that it satisfies the identity
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]/”;(x Jt) = td”ﬁ(m‘) everywhere. Now we use this formula to compute that for every £ we
have

1
€14

The point £/|£] is on the unit sphere and by Exercise 2 our function ﬁ is radial (by
combining the arguments we can actually choose a representative that is both radial and
satisfies the identity (1)). Thus f,(£/]€|) does not depend on the choice of £&. Hence we
can denote it by a constant ¢(y,d) and we get that

v o 0(77d)
f'y(g) _ |§|d—7

as wanted. Remark: It was very important to choose the correct representative of f,
as the unit sphere has zero measure in R¢ and thus the value of ¢(v,d) would otherwise
depend on the representative chosen, which would make no sense.

£ = F(€/1€)

Case v < d/2. In this case we have that d — v > d/2. From the previous case it follows

that y y
far(€) = % = c(d =7, d),(&).

This Fourier transform is taken in the sense of distributions. We can take the inverse
Fourier transform of both sides (again in the sense of distributions) to get that

fay(z) = c(d — v, d)F ' f,(x) = e(d — v, d)2x [, ().
The constant ¢(d — v, d) cannot be zero, so we get that

~ . c(y,d) B 1
f(&) = €[ where  c(y,d) = ld =, dy2n

as wanted.

Case v = d/2. Let us investigate what happens when v — d/2. By dominated convergence

we have that () (@)
x T
(f~,9) :/R P — /Rd ’i|d/2 = (fas2:9) -

d |$"7

This shows that f, = fz/2 in &'(R?). Thus we must also have that ﬁ — ﬁl; in S'(R%)

as 7 — d/2, since we already know that the distribution fd; is well-defined. Now let us
choose a subsequence 7y, so that the numbers (v, d) converge either to a real number ¢
or to +00. We can compute again by dominated convergence that

. 7o T C(’}/k)d)
i (g} = b [ el otayi

. 1
= <,}g§oc(%,d)> /Rd m—d/zg(f)df-




We know that the limit on the right hand side cannot be oo since the f\% must have a

distributional limit (which is fd;) Thus the ¢(k, d) must converge to a real number c.
This gives that

(Fang) = lim (Fng) = (c/ I, g).
It follows that ﬁ; = ¢/|€|%? as wanted.

Remark. It is in fact possible to determine the constants ¢(7, d) exactly with help of the
function e~*I*, whose Fourier transform is easy enough to find. The value turns out to be

T (t)

OO

where ' is the gamma function
[(s) := / t" e~ sds.
0

Exercise 8*. Try to figure out how might a fundamental solution of A2 look in R? !
Solution 8*. (sketch) We try to find the distribution £ with

A%E = §,.

Suppose that F is such a fundamental solution. Taking the Fourier transform and recalling
Exercise 5 from Set 6, we see that this is equivalent to

¢I'E = 1.

Here we run into a problem: the function & + |£]7* is not locally integrable and does not
define a tempered distribution in an obvious way.

However, we can get past this problem by considering a suitable singular integral. Denote
by A the operator with

ww—mmd

X
|z|>e |LIZ‘4 ’

if the limit exists. We claim that the limit exists for any g € S(R*) and that A € &'(R?).
We split the integral into two parts:

9(z) —9(0) , _ g(x) —9(0) . 9(z) —9(0)
/|ac|>s 4 /a:|21 ot /5<:v|<1 a

[t ]t ]t

We can estimate the first part as



‘A»l W dx‘ = /|x>1 2otg) dx = Dpo(g)

[t

where D is some independent constant. For the second part, we know that the second
partial derivatives of g are bounded by p2(g), so we have the following Taylor approximation
near O:

g(x) = g(0) + Vg(0) - « + |2[*A(=),

where A is a function that is bounded by Cyps(g) for some constant Cy in the neighbour-
hood of zero. Then we can use the fact that Vg(0) - z is odd to estimate

Lo o= o ™ )
ool L

C
< / 0r2(9) 4. Cipa(9)
|z|<1

|2

Here we used the fact that x — |72 is locally integrable. As X is linear and bounded by
the seminorm p,, we see that A € S'(R?).

We observe that (A, |z|1g) = (1, g), so now we need to find a tempered distribution F with
E = \. Recall from Exercise 4 of the previous set that (F~1T,g) = (T,F 'g) for any
T € S'(R*). So we will now use the inversion formula:

(E,g) =(F '\ g)=(\F 'g)
[ P - F()

e=0+ Jig|>e €]*

= —1 i - &x
= 2np /|£>/ LN g(@) (e = 1) dw dg
S 1 —4¢ ifx

T (2n)3 JL%L/Rgg(:c) /m% €] (e 1) dé d.

In last equality we used Fubini’s theorem. This is sound since we observe that the integrand
is bounded in absolute value by 2|g(x)||£|~*. As we are integrating outside a neighbourhood
of 0, this absolutely integrable and we can use Fubini.

dg




We will show that
[t - vag < o
|§1>e

for some constant C’. This would allow us to use the dominated convergence theorem
because |x|g is an integrable function. For this, we will pass to the spherical coordinates.
For x # 0 we have

-4 ix de = - 2,.—4( iru-c ds d
Lem @ - nde= [ [ iere - asa i

_ / h /S (e — 1) dS(u)dr
= [, Ly -1 asq g

]

— |1 / y2 / (/1) 1) dS(u) dy.
elz| S2

We made a change of variables r|z| = y. Now we observe that (z/|z|) is a unit vector.
The value of the inner integral is independent of x as we are integrating over the whole
unit sphere (we can see this by taking a rotation).

If we split this integral again and use the symmetry, we see that the limit as € — 0+ exists.
In particular, the integral is bounded by C’|z| and has a limit C|z| for some constant C'

Using dominated convergence theorem, we finally obtain

_ x) lim G- r = ! x)Clx|dx
(E.0) = Gy oo 90 Jip, [ 165 1) dede = o [ ot@clel

This means that the fundamental solution of A? is of form C|z|.
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