
FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 9

Exercise 1. Determine the fundamental solution of Laplacian in 1-dimension, i.e. find E ∈
S ′(R) so that

(
d
dx

)2
E = δ0.

Solution 1. Recall the Heaviside step function

H(x) = χ[0,∞).

As distribution, we know that
d

dx
H(x) = δ0.

It now suffices to find an absolutely continuous function whose derivative is Heaviside
function plus some constant: this is an ordinary differential equation and one possible
solution is

E(x) = |x|/2.

Exercise 2. Use the Poisson summation formula to prove∑
n∈Z

1

1 + n2
= π

1 + e−2π

1− e−2π

Solution 2. Let us recall from the previous set of exercises that if f(x) = e−|x|, then

f̂(ξ) =
2

1 + ξ2
.

By the Fourier inversion formula we have also that

F
(
f̂
)

(x) = 2πe−|x|.

We want to apply the Poisson summation formula on the function f̂ . We must check that

|f̂(ξ)| ≤ C(1 + |ξ|)−1−ε and
∣∣∣F (f̂ ) (x)

∣∣∣ ≤ C(1 + |ξ|)−1−ε

for some constants C, ε > 0. The second condition holds for every ε > 0 since the expo-
nential function grows faster than any polynomial. The first condition works for ε = 1
because of the estimate

|f̂(ξ)| = 2

1 + ξ2
≤ 4

(1 + |ξ|)2
.

Thus we can apply the Poisson summation formula to get that

2
∑
n∈Z

1

1 + n2
=
∑
n∈Z

f̂(n) =
∑
n∈Z

F
(
f̂
)

(2πn) =
∑
n∈Z

2πe−|n|.
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The sum on the right hand side is a combination of two geometric sums and thus easy to
compute. In the end we get that∑

n∈Z

1

1 + n2
= π

1 + e−2π

1− e−2π
.

Exercise 3. (i) Suppose A : Rd → Rd is an invertible linear map (we denote by A also its
matrix). If f ∈ L1(Rd), define g(x) = f(Ax). Show that

ĝ(ξ) =
1

|det(A)|
f̂((A−1)T ξ),

where (A−1)T is the transpose of the inverse of A.

(ii) A function f ∈ L1(Rd) is radial if f(x) depends only on |x|. Use (i) to show that for
a radial function, the Fourier transform is radial.

(iii) Show that the result in (ii) holds also for every radial f ∈ L2(Rd) in a sense that

the Fourier transform f̂ ∈ L2(Rd) has a radial representative.

Solution 3. (i) We compute via the change of variables formula that

ĝ(ξ) =

∫
Rd

e−iξ·xf(Ax)dx

=
1

| detA|

∫
Rd

e−iξ·A
−1xf(x)dx

=
1

| detA|

∫
Rd

e−i(A
−1)T ξ·xf(x)dx

=
1

| detA|
f̂((A−1)T ξ).

We also used the property of the matrix transpose that ξ · A−1x = (A−1)T ξ · x.

(ii) Let f be a radial L1 function. Then f(Ax) = f(x). By the first part we get that

f̂(ξ) =
1

| detA|
f̂((A−1)T ξ) = f̂((A−1)T ξ),

since detA = ±1. Choosing A = (B−1)T for some other arbitrary rotation B gives that

f̂(ξ) = f̂(Bξ)

for every rotation B. Since f̂ is also continuous, it must be a radial function.

(iii) Let f be a radial L2 function. Then fM = f · ξB(0,M) is also radial and we have that

f̂M → f̂
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in L2. The functions f̂M are radial by (ii) so we now want to conclude that f̂ is also radial
(so we want to prove that the L2-limit of radial functions is radial).

!! Warning !! It is not enough to prove that f̂(Bξ) = f̂(ξ) for every rotation B (as L2-
functions). The problem comes from the fact that this only proves that for every rotation

B, the identity f̂(Bξ) = f̂(ξ) holds pointwise almost everywhere. The set of zero measure
in which this identity fails might depend on B! Thus it is not immediately obvious why
there is also a radial representative for our function f in its equivalence class in L2. Let
us look for a different approach.

Our original proof is based on the Lebesgue set:

N = {x ∈ Rn : x is a Lebesgue point for f̂}.

Indeed, if x, y ∈ N and |x| = |y|, then

f̂(x) = lim
r→0

1

|B(x, r)|

∫
B(x,r)

f̂(z)dz

= lim
r→0

lim
M→∞

1

|B(x, r)|

∫
B(x,r)

f̂M(z)dz

= lim
r→0

lim
M→∞

1

|B(x, r)|

∫
B(y,r)

f̂M(z)dz

= lim
r→0

1

|B(y, r)|

∫
B(y,r)

f̂(z)dz

= f̂(y).

Thus f is radial in the Lebesgue set. The complement of the Lebesgue set is of measure
zero, so we can redefine f in the complement so that it is radial everywhere.

Another proof for the same fact is to choose a subsequence of f̂M that converges to f̂ point-
wise almost everywhere. This is possible as proven in the real analysis course. Since f̂ is
almost everywhere a pointwise limit of radial functions, it must have a radial representative
in L2.

Exercise 4. Show that if E is a fundamental solution of the differential operator (with constant
coefficients) P (∂), then E + H is also a fundamental solution, if H ∈ S ′(Rd) satisfies
P (∂)H = 0.Verify that actually all fundamental solutions of P are obtained by this manner.

Solution 4. As the considered differential operator is linear, we see that for any ϕ ∈ S(Rd)

〈P (∂)(E +H), ϕ〉 = 〈P (∂)E,ϕ〉+ 〈P (∂)H,ϕ〉 = 〈δ0, ϕ〉+ 〈0, ϕ〉 = 〈δ0, ϕ〉.

Next assume that E1, E2 are two fundamental solutions. Then E2 = E1 + (E2 − E1) and
we have for any ϕ ∈ S(Rd)

〈P (∂)(E2 − E1), ϕ〉 = 〈P (∂)E2, ϕ〉 − 〈P (∂)E1, ϕ〉 = 〈δ0, ϕ〉 − 〈δ0, ϕ〉 = 0.

Therefore all fundamental solutions can be obtained from one by adding H ∈ S ′(Rd) that
satisfies P (∂)H = 0.
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Exercise 5. Recall that we proved that at the function (an example of Weierstrass functions)

f(x) :=
∞∑
n=1

2−n/2 cos(2nx)

is not differentiable at any point. Show in any case that in the sense of distributions we
have

f ′(x) = −
∞∑
n=1

2n/2 sin(2nx) !

Solution 5. Define

fN =
N∑
n=1

2−n/2 cos(2nx).

Then the fN are continuous functions and fN → f uniformly as n → ∞. The uniform
convergence follows from

|f(x)− fN(x)| ≤
∞∑

n=N+1

2−n/2 → 0.

Thus fN → f in the sense of distributions, which implies that f ′N → f ′ in the sense of
distributions. Thus

f ′N(x) = −
N∑
n=1

i2n2−n/2sin2nx = −
N∑
n=1

i2n/2sin2nx → f ′

in the sense of distributions, which is what we wanted to prove.

Exercise 6. Let A = {(x, y) : x > 0, y > 0} ∪ {(x, y) : x < 0, y < 0} ⊂ R2.

Show that the characteristic function χA is a fundamental solution

for the differential operator P1(∂) = 1
2
∂1∂2.

Solution 6. We need to check that in the sense of distributions the following identity holds:

P1(∂)χA = δ0.
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This is just a simple calculation as follows:

〈P1(∂)χA, g〉 =

〈
χA,

1

2
gxy

〉
=

∫∫
A

gxy(x, y)dxdy

=
1

2

∫ ∞
0

∫ ∞
0

gxy(x, y)dxdy +
1

2

∫ 0

−∞

∫ 0

−∞
gxy(x, y)dxdy

=
1

2

∫ ∞
0

−gy(0, y)dy +
1

2

∫ 0

−∞
gy(0, y)dy

=
g(0, 0)

2
+
g(0, 0)

2
= 〈δ0, g〉 .

Exercise 7. (i) If 0 < γ < d, show that the function

fγ(x) =
1

|x|γ
, x ∈ Rd \ {0},

determines a tempered distribution, by writing it as a sum of two functions, one belonging
to L1(Rd) and the other to Lp(Rd) for a suitable p > 1. If γ > d/2, show that one can
choose p = 2.

(ii) Prove that

f̂γ(ξ) = c(d, γ)
1

|x|d−γ

for some constant c(d, γ).

Solution 7. (i) If 0 < γ < d, we write that

fγ(x) = χ{|x|<1}
1

|x|γ
+ χ{|x|≥1}

1

|x|γ
.

The first part is in L1 since by a spherical change of variables we find that∫
|x|<1

1

|x|γ
dx = C

∫ 1

0

1

rγ
rd−1dr,

and since the exponent d− γ − 1 is greater than −1, this integral is finite. For the second
part to be in Lp, the integral∫

|x|≥1

1

|x|pγ
dx = C

∫ ∞
1

1

rpγ
rd−1dr

must be finite. Thus we get the inequality d− pγ − 1 < −1, which is true when p > d/γ.
If γ > d/2, we see from this that one may choose p = 2. Thus in general fγ is a sum of an
L1-function and an Lp-function, and hence defines a tempered distribution on Rd.
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(ii) Case γ > d/2. In this case fγ is a sum of an L1-function and a L2-function. Thus we

find that the Fourier transform f̂γ is also a function (it is a sum of an L∞-function and a
L2-function). Note that the function fγ has the property that

fγ(tx) = t−γfγ(x) for every t > 0 and every x.

Let g ∈ S(Rd). Then 〈
f̂γ(x/t), g(x)

〉
=
〈
f̂γ(x), tdg(tx)

〉
=
〈
f̂γ(x), tdg(tx)

〉
=
〈
fγ(x), ̂tdg(tx)

〉
= 〈fγ(x), ĝ(x/t)〉
=
〈
tdfγ(tx), ĝ(x)

〉
= td−γ 〈fγ(x), ĝ(x)〉

=
〈
td−γ f̂γ(x), g(x)

〉
.

Thus f̂γ(x/t) = td−γ f̂γ(x) in the distributional sense. The above formula can also be
generalized to functions g in L1∩L2 by approximation. We want to conclude that there is
a representative of the function f̂γ (which is defined almost everywhere) that also satisfies
the identity

f̂γ(x/t) = td−γ f̂γ(x) (1)

at every point x ∈ Rn. For this we again use the Lebesgue set

N = {x ∈ Rn : x is a Lebesgue point for f̂γ}.

If x ∈ N and x/t ∈ N , then a computation similar to the one in Exercise 2(iii) gives that

f̂γ(x/t) = lim
r→0

1

|B(x/t, r)|

∫
B(x/t,r)

f̂γ(z)dz

= lim
r→0

1

|B(x/t, r)|

∫
B(x,tr)

t−df̂γ(z/t)dz

= lim
r→0

1

|B(x/t, r)|

〈
t−df̂γ(z/t), χB(x,tr)(z)

〉
= lim

r→0

td

|B(x, tr)|

〈
t−γ f̂γ(z), χB(x,tr)(z)

〉
= lim

r→0

td−γ

|B(x, tr)|

∫
B(x,tr)

f̂γ(z)dz

= td−γ f̂γ(x).

The computation is valid since χB(x,tr)(z) ∈ L1 ∩ L2. Since the Lebesgue set N contains
almost every point in Rd, we can redefine f outside of N so that it satisfies the identity
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f̂γ(x/t) = td−γ f̂γ(x) everywhere. Now we use this formula to compute that for every ξ we
have

f̂γ(ξ) = f̂γ(ξ/|ξ|)
1

|ξ|d−γ
.

The point ξ/|ξ| is on the unit sphere and by Exercise 2 our function f̂γ is radial (by
combining the arguments we can actually choose a representative that is both radial and
satisfies the identity (1)). Thus f̂γ(ξ/|ξ|) does not depend on the choice of ξ. Hence we
can denote it by a constant c(γ, d) and we get that

f̂γ(ξ) =
c(γ, d)

|ξ|d−γ

as wanted. Remark: It was very important to choose the correct representative of f ,
as the unit sphere has zero measure in Rd and thus the value of c(γ, δ) would otherwise
depend on the representative chosen, which would make no sense.

Case γ < d/2. In this case we have that d − γ > d/2. From the previous case it follows
that

f̂d−γ(ξ) =
c(d− γ, d)

|ξ|γ
= c(d− γ, d)fγ(ξ).

This Fourier transform is taken in the sense of distributions. We can take the inverse
Fourier transform of both sides (again in the sense of distributions) to get that

fd−γ(x) = c(d− γ, d)F−1fγ(x) = c(d− γ, d)2πf̂γ(x).

The constant c(d− γ, d) cannot be zero, so we get that

f̂γ(ξ) =
c(γ, d)

|ξ|d−γ
where c(γ, d) =

1

c(d− γ, d)2π

as wanted.

Case γ = d/2. Let us investigate what happens when γ → d/2. By dominated convergence
we have that

〈fγ, g〉 =

∫
Rd

g(x)

|x|γ
dx→

∫
Rd

g(x)

|x|d/2
=
〈
fd/2, g

〉
.

This shows that fγ → fd/2 in S ′(Rd). Thus we must also have that f̂γ → f̂d/2 in S ′(Rd)

as γ → d/2, since we already know that the distribution f̂d/2 is well-defined. Now let us
choose a subsequence γk so that the numbers c(γk, d) converge either to a real number c
or to ±∞. We can compute again by dominated convergence that

lim
k→∞

〈
f̂γk , g

〉
= lim

k→∞

∫
Rd

c(γk, d)

|x|d−γk
g(x)dx

=
(

lim
k→∞

c(γk, d)
)∫

Rd

1

|x|d/2
g(x)dx.
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We know that the limit on the right hand side cannot be ±∞ since the f̂γk must have a

distributional limit (which is f̂d/2). Thus the c(γk, d) must converge to a real number c.
This gives that 〈

f̂d/2, g
〉

= lim
k→∞

〈
f̂γk , g

〉
=
〈
c/|ξ|d/2, g

〉
.

It follows that f̂d/2 = c/|ξ|d/2 as wanted.

Remark. It is in fact possible to determine the constants c(γ, d) exactly with help of the
function e−|x|

2
, whose Fourier transform is easy enough to find. The value turns out to be

c(γ, d) =
πd/22d−γΓ

(
d−γ
2

)
Γ(γ/2)

,

where Γ is the gamma function

Γ(s) :=

∫ ∞
0

ts−1e−s ds.

Exercise 8∗. Try to figure out how might a fundamental solution of ∆2 look in R3 !

Solution 8∗. (sketch) We try to find the distribution E with

∆2E = δ0.

Suppose that E is such a fundamental solution. Taking the Fourier transform and recalling
Exercise 5 from Set 6, we see that this is equivalent to

|ξ|4Ê = 1.

Here we run into a problem: the function ξ 7→ |ξ|−4 is not locally integrable and does not
define a tempered distribution in an obvious way.

However, we can get past this problem by considering a suitable singular integral. Denote
by λ the operator with

〈λ, g〉 := lim
ε→0+

∫
|x|>ε

g(x)− g(0)

|x|4
dx,

if the limit exists. We claim that the limit exists for any g ∈ S(R3) and that λ ∈ S ′(R3).
We split the integral into two parts:∫

|x|>ε

g(x)− g(0)

|x|4
dx =

∫
|x|≥1

g(x)− g(0)

|x|4
dx+

∫
ε<|x|<1

g(x)− g(0)

|x|4
dx.

We can estimate the first part as
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∣∣∣∣∫
|x|≥1

g(x)− g(0)

|x|4
dx

∣∣∣∣ ≤ ∫
|x|≥1

2p0(g)

|x|4
dx = Dp0(g)

where D is some independent constant. For the second part, we know that the second
partial derivatives of g are bounded by p2(g), so we have the following Taylor approximation
near 0:

g(x) = g(0) +∇g(0) · x+ |x|2A(x),

where A is a function that is bounded by C0p2(g) for some constant C0 in the neighbour-
hood of zero. Then we can use the fact that ∇g(0) · x is odd to estimate

∣∣∣∣∫
ε<|x|<1

g(x)− g(0)

|x|4
dx

∣∣∣∣ =

∣∣∣∣∫
ε<|x|<1

(
∇g(0) · x
|x|4

+
A(x)

|x|2

)
dx

∣∣∣∣
=

∣∣∣∣∫
ε<|x|<1

A(x)

|x|2
dx

∣∣∣∣→ ∣∣∣∣∫
|x|<1

A(x)

|x|2
dx

∣∣∣∣
≤
∫
|x|<1

C0p2(g)

|x|2
dx = C1p2(g)

Here we used the fact that x 7→ |x|−2 is locally integrable. As λ is linear and bounded by
the seminorm p2, we see that λ ∈ S ′(R3).

We observe that 〈λ, |x|4g〉 = 〈1, g〉, so now we need to find a tempered distribution E with

Ê = λ. Recall from Exercise 4 of the previous set that 〈F−1T, g〉 = 〈T,F−1g〉 for any
T ∈ S ′(R3). So we will now use the inversion formula:

〈E, g〉 = 〈F−1λ, g〉 = 〈λ,F−1g〉

= lim
ε→0+

∫
|ξ|>ε

F−1g(ξ)−F−1g(0)

|ξ|4
dξ

= lim
ε→0+

∫
|ξ|>ε
|ξ|−4

(
1

(2π)3

∫
R3

g(x)eiξ·x dx− 1

(2π)3

∫
R3

g(x) dx

)
dξ

=
1

(2π)3
lim
ε→0+

∫
|ξ|>ε

∫
R3
|ξ|−4g(x)(eiξ·x − 1) dx dξ

=
1

(2π)3
lim
ε→0+

∫
R3

g(x)

∫
|ξ|>ε
|ξ|−4(eiξ·x − 1) dξ dx.

In last equality we used Fubini’s theorem. This is sound since we observe that the integrand
is bounded in absolute value by 2|g(x)||ξ|−4. As we are integrating outside a neighbourhood
of 0, this absolutely integrable and we can use Fubini.
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We will show that ∫
|ξ|>ε
|ξ|−4(eiξ·x − 1) dξ ≤ C ′|x|

for some constant C ′. This would allow us to use the dominated convergence theorem
because |x|g is an integrable function. For this, we will pass to the spherical coordinates.
For x 6= 0 we have∫

|ξ|>ε
|ξ|−4(eiξ·x − 1) dξ =

∫ ∞
ε

∫
S2

r2r−4(eiru·x − 1) dS(u) dr

=

∫ ∞
ε

∫
S2

r−2(eiu·rx − 1) dS(u) dr

=

∫ ∞
ε|x|

∫
S2

(y/|x|)−2(eiu·(y/|x|)x − 1) dS(u)
dy

|x|

= |x|
∫ ∞
ε|x|

y−2
∫
S2

(eiyu·(x/|x|) − 1) dS(u) dy.

We made a change of variables r|x| = y. Now we observe that (x/|x|) is a unit vector.
The value of the inner integral is independent of x as we are integrating over the whole
unit sphere (we can see this by taking a rotation).

If we split this integral again and use the symmetry, we see that the limit as ε→ 0+ exists.
In particular, the integral is bounded by C ′|x| and has a limit C|x| for some constant C.

Using dominated convergence theorem, we finally obtain

〈E, g〉 =
1

(2π)3

∫
R3

g(x) lim
ε→0+

∫
|ξ|>ε
|ξ|−4(eiξ·x − 1) dξ dx =

1

(2π)3

∫
R3

g(x)C|x| dx.

This means that the fundamental solution of ∆2 is of form C|x|.
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