FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 9

Exercise 1. Determine the fundamental solution of Laplacian in 1-dimension, i.e. find $E \in$ $\mathcal{S}^{\prime}(\mathbb{R})$ so that $\left(\frac{d}{d x}\right)^{2} E=\delta_{0}$.

Solution 1. Recall the Heaviside step function

$$
H(x)=\chi_{[0, \infty)}
$$

As distribution, we know that

$$
\frac{d}{d x} H(x)=\delta_{0}
$$

It now suffices to find an absolutely continuous function whose derivative is Heaviside function plus some constant: this is an ordinary differential equation and one possible solution is

$$
E(x)=|x| / 2 .
$$

Exercise 2. Use the Poisson summation formula to prove

$$
\sum_{n \in \mathbb{Z}} \frac{1}{1+n^{2}}=\pi \frac{1+e^{-2 \pi}}{1-e^{-2 \pi}}
$$

Solution 2. Let us recall from the previous set of exercises that if $f(x)=e^{-|x|}$, then

$$
\widehat{f}(\xi)=\frac{2}{1+\xi^{2}}
$$

By the Fourier inversion formula we have also that

$$
\mathcal{F}(\widehat{f})(x)=2 \pi e^{-|x|}
$$

We want to apply the Poisson summation formula on the function \widehat{f}. We must check that

$$
|\widehat{f}(\xi)| \leq C(1+|\xi|)^{-1-\epsilon} \quad \text { and } \quad|\mathcal{F}(\widehat{f})(x)| \leq C(1+|\xi|)^{-1-\epsilon}
$$

for some constants $C, \epsilon>0$. The second condition holds for every $\epsilon>0$ since the exponential function grows faster than any polynomial. The first condition works for $\epsilon=1$ because of the estimate

$$
|\widehat{f}(\xi)|=\frac{2}{1+\xi^{2}} \leq \frac{4}{(1+|\xi|)^{2}}
$$

Thus we can apply the Poisson summation formula to get that

$$
2 \sum_{n \in \mathbb{Z}} \frac{1}{1+n^{2}}=\sum_{n \in \mathbb{Z}} \widehat{f}(n)=\sum_{n \in \mathbb{Z}} \mathcal{F}(\widehat{f})(2 \pi n)=\sum_{n \in \mathbb{Z}} 2 \pi e^{-|n|}
$$

The sum on the right hand side is a combination of two geometric sums and thus easy to compute. In the end we get that

$$
\sum_{n \in \mathbb{Z}} \frac{1}{1+n^{2}}=\pi \frac{1+e^{-2 \pi}}{1-e^{-2 \pi}}
$$

Exercise 3. (i) Suppose $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is an invertible linear map (we denote by A also its matrix). If $f \in L^{1}\left(\mathbb{R}^{d}\right)$, define $g(x)=f(A x)$. Show that

$$
\widehat{g}(\xi)=\frac{1}{|\operatorname{det}(A)|} \widehat{f}\left(\left(A^{-1}\right)^{T} \xi\right)
$$

where $\left(A^{-1}\right)^{T}$ is the transpose of the inverse of A.
(ii) A function $f \in L^{1}\left(\mathbb{R}^{d}\right)$ is radial if $f(x)$ depends only on $|x|$. Use (i) to show that for a radial function, the Fourier transform is radial.
(iii) Show that the result in (ii) holds also for every radial $f \in L^{2}\left(\mathbb{R}^{d}\right)$ in a sense that the Fourier transform $\widehat{f} \in L^{2}\left(\mathbb{R}^{d}\right)$ has a radial representative.

Solution 3. (i) We compute via the change of variables formula that

$$
\begin{aligned}
\widehat{g}(\xi) & =\int_{\mathbb{R}^{d}} e^{-i \xi \cdot x} f(A x) d x \\
& =\frac{1}{|\operatorname{det} A|} \int_{\mathbb{R}^{d}} e^{-i \xi \cdot A^{-1} x} f(x) d x \\
& =\frac{1}{|\operatorname{det} A|} \int_{\mathbb{R}^{d}} e^{-i\left(A^{-1}\right)^{T} \xi \cdot x} f(x) d x \\
& =\frac{1}{|\operatorname{det} A|} \widehat{f}\left(\left(A^{-1}\right)^{T} \xi\right)
\end{aligned}
$$

We also used the property of the matrix transpose that $\xi \cdot A^{-1} x=\left(A^{-1}\right)^{T} \xi \cdot x$.
(ii) Let f be a radial L^{1} function. Then $f(A x)=f(x)$. By the first part we get that

$$
\widehat{f}(\xi)=\frac{1}{|\operatorname{det} A|} \widehat{f}\left(\left(A^{-1}\right)^{T} \xi\right)=\widehat{f}\left(\left(A^{-1}\right)^{T} \xi\right)
$$

since $\operatorname{det} A= \pm 1$. Choosing $A=\left(B^{-1}\right)^{T}$ for some other arbitrary rotation B gives that

$$
\widehat{f}(\xi)=\widehat{f}(B \xi)
$$

for every rotation B. Since \widehat{f} is also continuous, it must be a radial function.
(iii) Let f be a radial L^{2} function. Then $f_{M}=f \cdot \xi_{B(0, M)}$ is also radial and we have that

$$
\widehat{f_{M}} \rightarrow \widehat{f}
$$

in L^{2}. The functions $\widehat{f_{M}}$ are radial by (ii) so we now want to conclude that \widehat{f} is also radial (so we want to prove that the L^{2}-limit of radial functions is radial).
!! Warning !! It is not enough to prove that $\widehat{f}(B \xi)=\widehat{f}(\xi)$ for every rotation B (as L^{2} functions). The problem comes from the fact that this only proves that for every rotation B, the identity $\widehat{f}(B \xi)=\widehat{f}(\xi)$ holds pointwise almost everywhere. The set of zero measure in which this identity fails might depend on B ! Thus it is not immediately obvious why there is also a radial representative for our function f in its equivalence class in L^{2}. Let us look for a different approach.
Our original proof is based on the Lebesgue set:

$$
N=\left\{x \in \mathbb{R}^{n}: x \text { is a Lebesgue point for } \widehat{f}\right\}
$$

Indeed, if $x, y \in N$ and $|x|=|y|$, then

$$
\begin{aligned}
\widehat{f}(x) & =\lim _{r \rightarrow 0} \frac{1}{|B(x, r)|} \int_{B(x, r)} \widehat{f}(z) d z \\
& =\lim _{r \rightarrow 0} \lim _{M \rightarrow \infty} \frac{1}{|B(x, r)|} \int_{B(x, r)} \widehat{f_{M}}(z) d z \\
& =\lim _{r \rightarrow 0} \lim _{M \rightarrow \infty} \frac{1}{|B(x, r)|} \int_{B(y, r)} \widehat{f_{M}}(z) d z \\
& =\lim _{r \rightarrow 0} \frac{1}{|B(y, r)|} \int_{B(y, r)} \widehat{f}(z) d z \\
& =\widehat{f}(y) .
\end{aligned}
$$

Thus f is radial in the Lebesgue set. The complement of the Lebesgue set is of measure zero, so we can redefine f in the complement so that it is radial everywhere.
Another proof for the same fact is to choose a subsequence of $\widehat{f_{M}}$ that converges to \widehat{f} pointwise almost everywhere. This is possible as proven in the real analysis course. Since \widehat{f} is almost everywhere a pointwise limit of radial functions, it must have a radial representative in L^{2}.

Exercise 4. Show that if E is a fundamental solution of the differential operator (with constant coefficients) $P(\partial)$, then $E+H$ is also a fundamental solution, if $H \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ satisfies $P(\partial) H=0$. Verify that actually all fundamental solutions of P are obtained by this manner.

Solution 4. As the considered differential operator is linear, we see that for any $\varphi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$

$$
\langle P(\partial)(E+H), \varphi\rangle=\langle P(\partial) E, \varphi\rangle+\langle P(\partial) H, \varphi\rangle=\left\langle\delta_{0}, \varphi\right\rangle+\langle 0, \varphi\rangle=\left\langle\delta_{0}, \varphi\right\rangle
$$

Next assume that E_{1}, E_{2} are two fundamental solutions. Then $E_{2}=E_{1}+\left(E_{2}-E_{1}\right)$ and we have for any $\varphi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$

$$
\left\langle P(\partial)\left(E_{2}-E_{1}\right), \varphi\right\rangle=\left\langle P(\partial) E_{2}, \varphi\right\rangle-\left\langle P(\partial) E_{1}, \varphi\right\rangle=\left\langle\delta_{0}, \varphi\right\rangle-\left\langle\delta_{0}, \varphi\right\rangle=0
$$

Therefore all fundamental solutions can be obtained from one by adding $H \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ that satisfies $P(\partial) H=0$.

Exercise 5. Recall that we proved that at the function (an example of Weierstrass functions)

$$
f(x):=\sum_{n=1}^{\infty} 2^{-n / 2} \cos \left(2^{n} x\right)
$$

is not differentiable at any point. Show in any case that in the sense of distributions we have

$$
f^{\prime}(x)=-\sum_{n=1}^{\infty} 2^{n / 2} \sin \left(2^{n} x\right)
$$

Solution 5. Define

$$
f_{N}=\sum_{n=1}^{N} 2^{-n / 2} \cos \left(2^{n} x\right)
$$

Then the f_{N} are continuous functions and $f_{N} \rightarrow f$ uniformly as $n \rightarrow \infty$. The uniform convergence follows from

$$
\left|f(x)-f_{N}(x)\right| \leq \sum_{n=N+1}^{\infty} 2^{-n / 2} \rightarrow 0
$$

Thus $f_{N} \rightarrow f$ in the sense of distributions, which implies that $f_{N}^{\prime} \rightarrow f^{\prime}$ in the sense of distributions. Thus

$$
f_{N}^{\prime}(x)=-\sum_{n=1}^{N} i 2^{n} 2^{-n / 2} \sin ^{2^{n} x}=-\sum_{n=1}^{N} i 2^{n / 2} \sin ^{2^{n} x} \rightarrow f^{\prime}
$$

in the sense of distributions, which is what we wanted to prove.
Exercise 6. Let $A=\{(x, y): x>0, y>0\} \cup\{(x, y): x<0, y<0\} \subset \mathbb{R}^{2}$.
Show that the characteristic function χ_{A} is a fundamental solution for the differential operator $P_{1}(\partial)=\frac{1}{2} \partial_{1} \partial_{2}$.

Solution 6. We need to check that in the sense of distributions the following identity holds:

$$
P_{1}(\partial) \chi_{A}=\delta_{0} .
$$

This is just a simple calculation as follows:

$$
\begin{aligned}
\left\langle P_{1}(\partial) \chi_{A}, g\right\rangle & =\left\langle\chi_{A}, \frac{1}{2} g_{x y}\right\rangle \\
& =\iint_{A} g_{x y}(x, y) d x d y \\
& =\frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} g_{x y}(x, y) d x d y+\frac{1}{2} \int_{-\infty}^{0} \int_{-\infty}^{0} g_{x y}(x, y) d x d y \\
& =\frac{1}{2} \int_{0}^{\infty}-g_{y}(0, y) d y+\frac{1}{2} \int_{-\infty}^{0} g_{y}(0, y) d y \\
& =\frac{g(0,0)}{2}+\frac{g(0,0)}{2} \\
& =\left\langle\delta_{0}, g\right\rangle
\end{aligned}
$$

Exercise 7. (i) If $0<\gamma<d$, show that the function

$$
f_{\gamma}(x)=\frac{1}{|x|^{\gamma}}, \quad x \in \mathbb{R}^{d} \backslash\{0\}
$$

determines a tempered distribution, by writing it as a sum of two functions, one belonging to $L^{1}\left(\mathbb{R}^{d}\right)$ and the other to $L^{p}\left(\mathbb{R}^{d}\right)$ for a suitable $p>1$. If $\gamma>d / 2$, show that one can choose $p=2$.
(ii) Prove that

$$
\widehat{f}_{\gamma}(\xi)=c(d, \gamma) \frac{1}{|x|^{d-\gamma}}
$$

for some constant $c(d, \gamma)$.
Solution 7. (i) If $0<\gamma<d$, we write that

$$
f_{\gamma}(x)=\chi_{\{|x|<1\}} \frac{1}{|x|^{\gamma}}+\chi_{\{|x| \geq 1\}} \frac{1}{|x|^{\gamma}}
$$

The first part is in L^{1} since by a spherical change of variables we find that

$$
\int_{|x|<1} \frac{1}{|x|^{\gamma}} d x=C \int_{0}^{1} \frac{1}{r^{\gamma}} r^{d-1} d r
$$

and since the exponent $d-\gamma-1$ is greater than -1 , this integral is finite. For the second part to be in L^{p}, the integral

$$
\int_{|x| \geq 1} \frac{1}{|x|^{p \gamma}} d x=C \int_{1}^{\infty} \frac{1}{r^{p \gamma}} r^{d-1} d r
$$

must be finite. Thus we get the inequality $d-p \gamma-1<-1$, which is true when $p>d / \gamma$. If $\gamma>d / 2$, we see from this that one may choose $p=2$. Thus in general f_{γ} is a sum of an L^{1}-function and an L^{p}-function, and hence defines a tempered distribution on \mathbb{R}^{d}.
(ii) Case $\gamma>d / 2$. In this case f_{γ} is a sum of an L^{1}-function and a L^{2}-function. Thus we find that the Fourier transform \widehat{f}_{γ} is also a function (it is a sum of an L^{∞}-function and a L^{2}-function). Note that the function f_{γ} has the property that

$$
f_{\gamma}(t x)=t^{-\gamma} f_{\gamma}(x) \quad \text { for every } t>0 \text { and every } x .
$$

Let $g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$. Then

$$
\begin{aligned}
\left\langle\widehat{\hat{f}_{\gamma}}(x / t), g(x)\right\rangle & =\left\langle\widehat{f_{\gamma}}(x), t^{d} g(t x)\right\rangle \\
& =\left\langle\widehat{f_{\gamma}}(x), t^{d} g(t x)\right\rangle \\
& =\left\langle f_{\gamma}(x), \widehat{t^{d} g(t x)}\right\rangle \\
& =\left\langle f_{\gamma}(x), \widehat{g}(x / t)\right\rangle \\
& =\left\langle t^{d} f_{\gamma}(t x), \widehat{g}(x)\right\rangle \\
& =t^{d-\gamma}\left\langle f_{\gamma}(x), \widehat{g}(x)\right\rangle \\
& =\left\langle t^{d-\gamma} \widehat{f}_{\gamma}(x), g(x)\right\rangle .
\end{aligned}
$$

Thus $\widehat{f}_{\gamma}(x / t)=t^{d-\gamma} \widehat{f}_{\gamma}(x)$ in the distributional sense. The above formula can also be generalized to functions g in $L^{1} \cap L^{2}$ by approximation. We want to conclude that there is a representative of the function \widehat{f}_{γ} (which is defined almost everywhere) that also satisfies the identity

$$
\begin{equation*}
\widehat{f}_{\gamma}(x / t)=t^{d-\gamma} \widehat{\gamma}_{\gamma}(x) \tag{1}
\end{equation*}
$$

at every point $x \in \mathbb{R}^{n}$. For this we again use the Lebesgue set

$$
N=\left\{x \in \mathbb{R}^{n}: x \text { is a Lebesgue point for } \widehat{f}_{\gamma}\right\}
$$

If $x \in N$ and $x / t \in N$, then a computation similar to the one in Exercise 2(iii) gives that

$$
\begin{aligned}
\widehat{f}_{\gamma}(x / t) & =\lim _{r \rightarrow 0} \frac{1}{|B(x / t, r)|} \int_{B(x / t, r)} \widehat{f}_{\gamma}(z) d z \\
& =\lim _{r \rightarrow 0} \frac{1}{|B(x / t, r)|} \int_{B(x, t r)} t^{-d} \widehat{f}_{\gamma}(z / t) d z \\
& =\lim _{r \rightarrow 0} \frac{1}{|B(x / t, r)|}\left\langle t^{-d} \widehat{f}_{\gamma}(z / t), \chi_{B(x, t r)}(z)\right\rangle \\
& =\lim _{r \rightarrow 0} \frac{t^{d}}{|B(x, t r)|}\left\langle t^{-\gamma} \widehat{f}_{\gamma}(z), \chi_{B(x, t r)}(z)\right\rangle \\
& =\lim _{r \rightarrow 0} \frac{t^{d-\gamma}}{|B(x, t r)|} \int_{B(x, t r)} \widehat{f}_{\gamma}(z) d z \\
& =t^{d-\gamma} \widehat{f}_{\gamma}(x)
\end{aligned}
$$

The computation is valid since $\chi_{B(x, t r)}(z) \in L^{1} \cap L^{2}$. Since the Lebesgue set N contains almost every point in \mathbb{R}^{d}, we can redefine f outside of N so that it satisfies the identity
$\widehat{f}_{\gamma}(x / t)=t^{d-\gamma} \widehat{f}_{\gamma}(x)$ everywhere. Now we use this formula to compute that for every ξ we have

$$
\widehat{f}_{\gamma}(\xi)=\widehat{f}_{\gamma}(\xi /|\xi|) \frac{1}{|\xi|^{d-\gamma}}
$$

The point $\xi /|\xi|$ is on the unit sphere and by Exercise 2 our function \widehat{f}_{γ} is radial (by combining the arguments we can actually choose a representative that is both radial and satisfies the identity (1)). Thus $\widehat{f}_{\gamma}(\xi /|\xi|)$ does not depend on the choice of ξ. Hence we can denote it by a constant $c(\gamma, d)$ and we get that

$$
\widehat{f}_{\gamma}(\xi)=\frac{c(\gamma, d)}{|\xi|^{d-\gamma}}
$$

as wanted. Remark: It was very important to choose the correct representative of f, as the unit sphere has zero measure in \mathbb{R}^{d} and thus the value of $c(\gamma, \delta)$ would otherwise depend on the representative chosen, which would make no sense.
Case $\gamma<d / 2$. In this case we have that $d-\gamma>d / 2$. From the previous case it follows that

$$
\widehat{f_{d-\gamma}}(\xi)=\frac{c(d-\gamma, d)}{|\xi|^{\gamma}}=c(d-\gamma, d) f_{\gamma}(\xi)
$$

This Fourier transform is taken in the sense of distributions. We can take the inverse Fourier transform of both sides (again in the sense of distributions) to get that

$$
f_{d-\gamma}(x)=c(d-\gamma, d) \mathcal{F}^{-1} f_{\gamma}(x)=c(d-\gamma, d) 2 \pi \widehat{f}_{\gamma}(x)
$$

The constant $c(d-\gamma, d)$ cannot be zero, so we get that

$$
\widehat{f}_{\gamma}(\xi)=\frac{c(\gamma, d)}{|\xi|^{d-\gamma}} \quad \text { where } \quad c(\gamma, d)=\frac{1}{c(d-\gamma, d) 2 \pi}
$$

as wanted.
Case $\gamma=d / 2$. Let us investigate what happens when $\gamma \rightarrow d / 2$. By dominated convergence we have that

$$
\left\langle f_{\gamma}, g\right\rangle=\int_{\mathbb{R}^{d}} \frac{g(x)}{|x|^{\gamma}} d x \rightarrow \int_{\mathbb{R}^{d}} \frac{g(x)}{|x|^{d / 2}}=\left\langle f_{d / 2}, g\right\rangle
$$

This shows that $f_{\gamma} \rightarrow f_{d / 2}$ in $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$. Thus we must also have that $\widehat{f_{\gamma}} \rightarrow \widehat{f_{d / 2}}$ in $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ as $\gamma \rightarrow d / 2$, since we already know that the distribution $\widehat{f_{d / 2}}$ is well-defined. Now let us choose a subsequence γ_{k} so that the numbers $c\left(\gamma_{k}, d\right)$ converge either to a real number c or to $\pm \infty$. We can compute again by dominated convergence that

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left\langle\widehat{f_{\gamma_{k}}}, g\right\rangle & =\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{d}} \frac{c\left(\gamma_{k}, d\right)}{|x|^{d-\gamma_{k}}} g(x) d x \\
& =\left(\lim _{k \rightarrow \infty} c\left(\gamma_{k}, d\right)\right) \int_{\mathbb{R}^{d}} \frac{1}{|x|^{d / 2}} g(x) d x
\end{aligned}
$$

We know that the limit on the right hand side cannot be $\pm \infty$ since the $\widehat{f_{\gamma_{k}}}$ must have a distributional limit (which is $\left.\widehat{f_{d / 2}}\right)$. Thus the $c\left(\gamma_{k}, d\right)$ must converge to a real number c. This gives that

$$
\left.\left\langle\widehat{f_{d / 2}}, g\right\rangle=\lim _{k \rightarrow \infty}\left\langle\widehat{f_{\gamma_{k}}}, g\right\rangle=\left.\langle c /| \xi\right|^{d / 2}, g\right\rangle
$$

It follows that $\widehat{f_{d / 2}}=c /|\xi|^{d / 2}$ as wanted.
Remark. It is in fact possible to determine the constants $c(\gamma, d)$ exactly with help of the function $e^{-|x|^{2}}$, whose Fourier transform is easy enough to find. The value turns out to be

$$
c(\gamma, d)=\frac{\pi^{d / 2} 2^{d-\gamma} \Gamma\left(\frac{d-\gamma}{2}\right)}{\Gamma(\gamma / 2)},
$$

where Γ is the gamma function

$$
\Gamma(s):=\int_{0}^{\infty} t^{s-1} e^{-} s d s
$$

Exercise 8*. Try to figure out how might a fundamental solution of Δ^{2} look in \mathbb{R}^{3} !
Solution $\mathbf{8}^{*}$. (sketch) We try to find the distribution E with

$$
\Delta^{2} E=\delta_{0}
$$

Suppose that E is such a fundamental solution. Taking the Fourier transform and recalling Exercise 5 from Set 6 , we see that this is equivalent to

$$
|\xi|^{4} \widehat{E}=1
$$

Here we run into a problem: the function $\xi \mapsto|\xi|^{-4}$ is not locally integrable and does not define a tempered distribution in an obvious way.
However, we can get past this problem by considering a suitable singular integral. Denote by λ the operator with

$$
\langle\lambda, g\rangle:=\lim _{\varepsilon \rightarrow 0+} \int_{|x|>\varepsilon} \frac{g(x)-g(0)}{|x|^{4}} d x
$$

if the limit exists. We claim that the limit exists for any $g \in \mathcal{S}\left(\mathbb{R}^{3}\right)$ and that $\lambda \in \mathcal{S}^{\prime}\left(\mathbb{R}^{3}\right)$. We split the integral into two parts:

$$
\int_{|x|>\varepsilon} \frac{g(x)-g(0)}{|x|^{4}} d x=\int_{|x| \geq 1} \frac{g(x)-g(0)}{|x|^{4}} d x+\int_{\varepsilon<|x|<1} \frac{g(x)-g(0)}{|x|^{4}} d x .
$$

We can estimate the first part as

$$
\left|\int_{|x| \geq 1} \frac{g(x)-g(0)}{|x|^{4}} d x\right| \leq \int_{|x| \geq 1} \frac{2 p_{0}(g)}{|x|^{4}} d x=D p_{0}(g)
$$

where D is some independent constant. For the second part, we know that the second partial derivatives of g are bounded by $p_{2}(g)$, so we have the following Taylor approximation near 0 :

$$
g(x)=g(0)+\nabla g(0) \cdot x+|x|^{2} A(x),
$$

where A is a function that is bounded by $C_{0} p_{2}(g)$ for some constant C_{0} in the neighbourhood of zero. Then we can use the fact that $\nabla g(0) \cdot x$ is odd to estimate

$$
\begin{aligned}
\left|\int_{\varepsilon<|x|<1} \frac{g(x)-g(0)}{|x|^{4}} d x\right| & =\left|\int_{\varepsilon<|x|<1}\left(\frac{\nabla g(0) \cdot x}{|x|^{4}}+\frac{A(x)}{|x|^{2}}\right) d x\right| \\
& =\left|\int_{\varepsilon<|x|<1} \frac{A(x)}{|x|^{2}} d x\right| \rightarrow\left|\int_{|x|<1} \frac{A(x)}{|x|^{2}} d x\right| \\
& \leq \int_{|x|<1} \frac{C_{0} p_{2}(g)}{|x|^{2}} d x=C_{1} p_{2}(g)
\end{aligned}
$$

Here we used the fact that $x \mapsto|x|^{-2}$ is locally integrable. As λ is linear and bounded by the seminorm p_{2}, we see that $\lambda \in \mathcal{S}^{\prime}\left(\mathbb{R}^{3}\right)$.
We observe that $\left.\left.\langle\lambda| x\right|^{4} g,\right\rangle=\langle 1, g\rangle$, so now we need to find a tempered distribution E with $\widehat{E}=\lambda$. Recall from Exercise 4 of the previous set that $\left\langle\mathcal{F}^{-1} T, g\right\rangle=\left\langle T, \mathcal{F}^{-1} g\right\rangle$ for any $T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{3}\right)$. So we will now use the inversion formula:

$$
\begin{aligned}
\langle E, g\rangle & =\left\langle\mathcal{F}^{-1} \lambda, g\right\rangle=\left\langle\lambda, \mathcal{F}^{-1} g\right\rangle \\
& =\lim _{\varepsilon \rightarrow 0+} \int_{|\xi|>\varepsilon} \frac{\mathcal{F}^{-1} g(\xi)-\mathcal{F}^{-1} g(0)}{|\xi|^{4}} d \xi \\
& =\lim _{\varepsilon \rightarrow 0+} \int_{|\xi|>\varepsilon}|\xi|^{-4}\left(\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} g(x) e^{i \xi \cdot x} d x-\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} g(x) d x\right) d \xi \\
& =\frac{1}{(2 \pi)^{3}} \lim _{\varepsilon \rightarrow 0+} \int_{|\xi|>\varepsilon} \int_{\mathbb{R}^{3}}|\xi|^{-4} g(x)\left(e^{i \xi \cdot x}-1\right) d x d \xi \\
& =\frac{1}{(2 \pi)^{3}} \lim _{\varepsilon \rightarrow 0+} \int_{\mathbb{R}^{3}} g(x) \int_{|\xi|>\varepsilon}|\xi|^{-4}\left(e^{i \xi \cdot x}-1\right) d \xi d x
\end{aligned}
$$

In last equality we used Fubini's theorem. This is sound since we observe that the integrand is bounded in absolute value by $2|g(x)||\xi|^{-4}$. As we are integrating outside a neighbourhood of 0 , this absolutely integrable and we can use Fubini.

We will show that

$$
\int_{|\xi|>\varepsilon}|\xi|^{-4}\left(e^{i \xi \cdot x}-1\right) d \xi \leq C^{\prime}|x|
$$

for some constant C^{\prime}. This would allow us to use the dominated convergence theorem because $|x| g$ is an integrable function. For this, we will pass to the spherical coordinates. For $x \neq 0$ we have

$$
\begin{aligned}
\int_{|\xi|>\varepsilon}|\xi|^{-4}\left(e^{i \xi \cdot x}-1\right) d \xi & =\int_{\varepsilon}^{\infty} \int_{S^{2}} r^{2} r^{-4}\left(e^{i r u \cdot x}-1\right) d S(u) d r \\
& =\int_{\varepsilon}^{\infty} \int_{S^{2}} r^{-2}\left(e^{i u \cdot r x}-1\right) d S(u) d r \\
& =\int_{\varepsilon|x|}^{\infty} \int_{S^{2}}(y /|x|)^{-2}\left(e^{i u \cdot(y /|x|) x}-1\right) d S(u) \frac{d y}{|x|} \\
& =|x| \int_{\varepsilon|x|}^{\infty} y^{-2} \int_{S^{2}}\left(e^{i y u \cdot(x /|x|)}-1\right) d S(u) d y .
\end{aligned}
$$

We made a change of variables $r|x|=y$. Now we observe that $(x /|x|)$ is a unit vector. The value of the inner integral is independent of x as we are integrating over the whole unit sphere (we can see this by taking a rotation).
If we split this integral again and use the symmetry, we see that the limit as $\varepsilon \rightarrow 0+$ exists. In particular, the integral is bounded by $C^{\prime}|x|$ and has a limit $C|x|$ for some constant C.
Using dominated convergence theorem, we finally obtain

$$
\langle E, g\rangle=\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} g(x) \lim _{\varepsilon \rightarrow 0+} \int_{|\xi|>\varepsilon}|\xi|^{-4}\left(e^{i \xi \cdot x}-1\right) d \xi d x=\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} g(x) C|x| d x .
$$

This means that the fundamental solution of Δ^{2} is of form $C|x|$.

