FOURIER ANALYSIS. (Fall 2016)

9. EXERCISES (Fri 2.12, 10-12 in room C322)

1. Determine the fundamental solution of Laplacian in 1-dimension, i.e. find $E \in \mathcal{S}^{\prime}(\mathbf{R})$ so that $\left(\frac{d}{d x}\right)^{2} E=\delta_{0}$.
2. Use the Poisson summation formula to prove

$$
\sum_{n \in \mathbf{Z}} \frac{1}{1+n^{2}}=\pi \frac{1+e^{-2 \pi}}{1-e^{-2 \pi}}
$$

3. (i) Suppose $A: \mathbf{R}^{d} \rightarrow \mathbf{R}^{d}$ is an invertible linear map (we denote by A also its matrix). If $f \in L^{1}\left(\mathbf{R}^{d}\right)$, define $g(x)=f(A x)$. Show that

$$
\widehat{g}(\xi)=\frac{1}{|\operatorname{det}(A)|} \widehat{f}\left(\left(A^{-1}\right)^{T} \xi\right)
$$

where $\left(A^{-1}\right)^{T}$ is the transpose of the inverse of A.
(ii) A function $f \in L^{1}\left(\mathbf{R}^{d}\right)$ is radial if $f(x)$ depends only on $|x|$. Use (i) to show that for a radial function, the Fourier transform is radial.
(iii) Show that the result in (ii) holds also for every radial $f \in L^{2}\left(\mathbf{R}^{d}\right)$ in a sense that the Fourier transform $\widehat{f} \in L^{2}\left(\mathbf{R}^{d}\right)$ has a radial representative.
4. Show that if E is a fundamental solution of the differential operator (with constant coefficients) $P(\partial)$, then $E+H$ is also a fundamental solution, if $H \in \mathcal{S}^{\prime}\left(\mathbf{R}^{d}\right)$ satisfies $P(\partial) H=0$. Verify that actually all fundamental solutions of P are obtained by this manner.
5. Recall that we proved that at the function (an example of Weierstrass functions)

$$
f(x):=\sum_{n=1}^{\infty} 2^{-n / 2} \cos \left(2^{n} x\right)
$$

is not differentiable at any point. Show in any case that in the sense of distributions we have

$$
f^{\prime}(x)=-\sum_{n=1}^{\infty} 2^{n / 2} \sin \left(2^{n} x\right)
$$

6. Let $A=\{(x, y): x>0, y>0\} \cup\{(x, y): x<0, y<0\} \subset \mathbf{R}^{2}$.

Show that the characteristic function χ_{A} is a fundamental solution for the differential operator $P_{1}(\partial)=\frac{1}{2} \partial_{1} \partial_{2}$.
7. (i) If $0<\gamma<d$, show that the function

$$
f_{\gamma}(x)=\frac{1}{|x|^{\gamma}}, \quad x \in \mathbf{R}^{d} \backslash\{0\}
$$

determines a tempered distribution, by writing it as a sum of two functions, one belonging to $L^{1}\left(\mathbf{R}^{d}\right)$ and the other to $L^{p}\left(\mathbf{R}^{d}\right)$ for a suitable $p>1$. If $\gamma>d / 2$, show that one can choose $p=2$.
(ii) Prove that

$$
\widehat{f}_{\gamma}(\xi)=c(d, \gamma) \frac{1}{|x|^{d-\gamma}}
$$

for some constant $c(d, \gamma)$.
$8^{* 1}$ Try to figure out how might a fundamental solution of Δ^{2} look in $\mathbf{R}^{3}!$

[^0]
Hints for some of the exercises:

T.2: [Recall the Fourier transform of $f(x)=e^{-|x|}$.]
T.7: [Hints: Consider first the case $\gamma>d / 2$ and use (i) to show \widehat{f}_{γ} is a function. Apply Problem 2 together with the scaling property $f_{\gamma}(t x)=t^{-\gamma} f_{\gamma}(x)$.
The case $\gamma<d / 2$ follows by inverse transform, and case $\gamma=d / 2$ by a limiting argument.]

[^0]: ${ }^{1}$ These $*$-exercises are extras for afficinadoes, not required to get full points from exercises

