
FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 8

Exercise 1. Assume that the sequence of measurable functions fn is uniformly bounded, i.e.
|fn(x)| ≤ C for all x ∈ Rd and n ≥ 1, and it converges at almost every point:

lim fn(x) = g(x) for almost every x ∈ Rd.

Show that the fn → g in the sense of distributions.

Solution 1. Fix ϕ ∈ S ′(Rd). We know that∫
Rd
|fn(x)ϕ(x)| dx ≤

∫
Rd

C|ϕ(x)| dx <∞,

so we can use the dominated convergence theorem to see that

lim
n→∞
〈fn, ϕ〉 = lim

n→∞

∫
Rd

fn(x)ϕ(x) dx =

∫
Rd

lim
n→∞

fn(x)ϕ(x) dx =

∫
Rd

g(x)ϕ(x) dx = 〈g, ϕ〉.

This shows that fn → g in the sense of distributions.

Exercise 2. Is the function x2 sin(x) the Fourier transform of a distribution ? If so, determine
the distribution.

Solution 2. We may compute that

< x2 sin(x), g > =

∫
R
x2 sin(x)g(x)dx

=

∫
R

1

2i

(
eix − e−ix

)
x2g(x)dx

=
1

2i

(
(̂x2g)(−1)− (̂x2g)(1)

)
=
i

2

(
d2 ĝ

dx2
(−1)− d2 ĝ

dx2
(1)

)
=
i

2

〈
δ′′−1 − δ′′1 , ĝ

〉
.

=
i

2

〈
̂(δ′′−1 − δ′′1), g〉

Thus x2 sinx = T̂ , where T = i
2
(δ′′−1− δ′′1). Here of course δ is the Dirac delta distribution.

Exercise 3. (i) Let f ∈ S(R). Show that in the metric of the space S(R) it holds that
fε(x)→ f ′(x) as ε→ 0+, where fε(x) := ε−1

(
f(x+ ε)− f(x)

)
.
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(ii) Use part (i) to verify that in a similar manner for any f ∈ L1(R)

ε−1
(
f(x+ ε)− f(x)

)
→ d

dx
f as ε→ 0,

where d
dx
f is the derivative of f in the sense of distributions.

Solution 3. (i) Fix N , and note that

pN(fε − f ′) = sup
n≤N

sup
x∈R

(1 + |x|2)N
∣∣∣∣1ε (f (n)(x+ ε)− f (n)(x))− f (n+1)(x)

∣∣∣∣ .
We now estimate the expression inside. By the mean value theorem there exists y ∈
[x, x+ ε] so that

1

ε
(f (n)(x+ ε)− f (n)(x)) = f (n+1)(y).

Similarly there exists z ∈ [x, y] such that

f (n+1)(y)− f (n+1)(x) = f (n+2)(z)(y − x).

Thus ∣∣∣∣1ε (f (n)(x+ ε)− f (n)(x))− f (n+1)(x)

∣∣∣∣ =
∣∣f (n+2)(z)

∣∣ |y − x| ≤ ε
∣∣f (n+2)(z)

∣∣ .
Note also that since |z − x| ≤ ε, we have for sufficiently small ε that

(1 + |x|2)N ≤ 2N(1 + |z|2)N .

The exact value of the constant 2N here doesn’t really matter, but the proof of this estimate
can be done as follows:

|x| ≤ |z|+ ε ⇒ |x|2 ≤ |z|2 + 2ε|z|+ ε ⇒ 1 + |x|2 ≤ 1 + 2ε+ (1 + ε)|z|2 ≤ 2(1 + |z|2).

By combining everything we finally get that

pN(fε − f ′) ≤ sup
n≤N

sup
z∈R

2N(1 + |z|2)Nε
∣∣f (n+2)(z)

∣∣
≤ ε2NpN+2(f).

This shows that fε → f ′ in the topology of S(R) as ε→ 0.

(ii) Let g ∈ S(R). We compute that

< fε, g > =

∫ ∞
−∞

1

ε
(f(x+ ε)− f(x))g(x)dx

=

∫ ∞
−∞

1

ε
(g(x− ε)− g(x))f(x)dx

=

∫ ∞
−∞

g−εf(x)dx.
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Applying part (i) for the function h(x) = g(−x) shows that the functions g−ε converge
uniformly to −g′ as ε→ 0 so we can use dominated convergence to conclude that

lim
ε→0

< fε, g >= −
∫ ∞
−∞

g′(x)f(x)dx = − < f, g′ >=< f ′, g > .

This shows that limε→0 fε = f ′ in S ′(R).

Exercise 4. (i) Show that < F−1T, g > = < T,F−1g > for all T ∈ S ′(Rd)

and g ∈ S(Rd).

(ii) Verify that F4λ = (2π)2dλ for any λ ∈ S ′(Rd).

Solution 4. (i) Let us show that defining the inverse Fourier transform F−1 on S ′ by〈
F−1T, g

〉
=
〈
T,F−1g

〉
actually gives an inverse of the Fourier transform. This is easily seen since〈

F−1T̂ , g
〉

=
〈
T̂ ,F−1g

〉
=
〈
T,FF−1g

〉
= 〈T, g〉

and 〈
FF−1T, g

〉
=
〈
F−1T, ĝ

〉
=
〈
T,F−1ĝ

〉
= 〈T, g〉 .

(ii) Recall that for any g ∈ S(Rd) we have (F2g)(x) = (2π)dg(−x), which implies that
(F4g)(x) = (2π)2dg(x). Now we simply compute〈

F4λ, g
〉

=
〈
λ,F4g

〉
=
〈
λ, (2π)2dg

〉
=
〈
(2π)2dλ, g

〉
.

Exercise 5. Let K ∈ L1 with
∫
Rd K(x)dx = 1 and set Kε(x) := ε−dK(x/ε) for any ε > 0.

Prove that in the sense of distributions

lim
ε→0+

Kε = δ0.

Solution 5. Fix ϕ ∈ S ′(Rd) and ν > 0. As ϕ is continuous, there is some δ > 0 such that
|ϕ(x)− ϕ(0)| < ν whenever |x| < δ.

Now we compute

|〈Kε, ϕ〉 − 〈δ0, ϕ〉| =
∣∣∣∣∫Rd

Kε(x)ϕ(x) dx− ϕ(0)

∣∣∣∣ =

∣∣∣∣∫Rd
Kε(x)[ϕ(x)− ϕ(0)] dx

∣∣∣∣
≤
∫
|x|<δ
|Kε(x)||ϕ(x)− ϕ(0)| dx+

∫
|x|≥δ
|Kε(x)||ϕ(x)− ϕ(0)| dx

≤ ν

∫
|x|<δ
|Kε(x)| dx+ 2p0(ϕ)

∫
|x|≥δ
|Kε(x)| dx

≤ ν

∫
Rd
|K(x)| dx+ 2p0(ϕ)

∫
|x|≥δ/ε

|K(x)| dx
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In last step we used the change of variables. The first term is bounded by ν‖K‖L1 and
the second term converges to 0 by the dominated convergence theorem. This means that

lim sup
ε→0+

|〈Kε, ϕ〉 − 〈δ0, ϕ〉| ≤ ν‖K‖L1 .

As ν was arbitrary, the claim follows.

Exercise 6. Show that f(x) = log |x| ∈ S ′(R) and that the distributional derivative of f is

d

dx
(log |x|) = p.v.

1

x

Solution 6. The function log |x| is L1-integrable around x = 0 and grows slower than a
polynomial as |x| → ∞. This easily shows that it defines a tempered distribution on R.
We now compute that〈

d

dx
log |x|, g

〉
= −

〈
log |x|, d

dx
g

〉
= −

∫ ∞
−∞

log |x|g′(x)dx

= −
∫ 0

−∞
log(−x)g′(x)dx−

∫ ∞
0

log(x)g′(x)dx

= − lim
ε→0

∫ −ε
−1/ε

log(−x)g′(x)dx− lim
ε→0

∫ 1/ε

ε

log(x)g′(x)dx

= lim
ε→0

(− log(ε)g(−ε) + log(1/ε)g(−1/ε)− log(1/ε)g(1/ε) + log(ε)g(ε))

+ lim
ε→0

∫ −ε
−1/ε

1

x
g(x)dx+ lim

ε→0

∫ 1/ε

ε

1

x
g(x)dx

= 0 +

〈
p.v.

1

x
, g

〉
We have used integration by parts here, and dominated convergence to conclude∫ 0

−∞
log(−x)g′(x) dx = lim

ε→0

∫ −ε
−1/ε

log(−x)g′(x) dx

and ∫ ∞
0

log(x)g′(x) dx = lim
ε→0

∫ 1/ε

ε

log(x)g′(x) dx.

Additionally, since g is in S(R) we were able to conclude that

lim
ε→0

log(1/ε)g(−1/ε) = lim
ε→0

log(1/ε)g(1/ε) = 0

and

lim
ε→0

(log(ε)g(ε)− log(ε)g(−ε)) = lim
ε→0

ε log(ε)
g(ε)− g(−ε)

ε
= 0.

Thus d
dx

log |x| = p.v. 1
x
.
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Exercise 7. Let ψ ∈ C∞0 (R). Determine the Fourier transform of the distribution λ, where

〈λ, g〉 :=

∫
R
ψ(u)g(u, 0) du for all g ∈ S(R2).

Solution 7. By the definition of the Fourier transform for distributions,

〈λ̂, g〉 = 〈λ, ĝ〉 =

∫
R
ψ(u)ĝ(u, 0) du

=

∫
R
ψ(u)

∫
R2

eiuxg(x, y) dx dy du

=

∫ 2

R
g(x, y)

∫
R
ψ(u)eiux du dx dy

=

∫ 2

R
g(x, y)ψ̂(x) dx dy.

We have shown that λ̂ is a function with

λ̂(x, y) = ψ̂(x).

Exercise 8∗. (i) Define h(x) :=

∫ x

0

sin t

t
dt. Show that h : [0,∞)→ R is a bounded function.

(ii) Determine limx→∞ h(x) =

∫ ∞
0

sin t

t
dt by considering the function

g(t) :=
1

sin(t/2)
− 2

t
.

Solution 8∗. (i) First of all, h is continuous and h(0) = 1. We see that h has extrema in
points x = nπ for any positive integer n. Now, if we consider the sequence an = h(nπ)−
h((n− 1)π), we see that an > 0 exactly when n is odd. Additionally, |an| ≤ π/(n− 1), so
an → 0 as n→∞.

We also see that the sequence |an| is decreasing:

|an| − |an+1| =
∫ π

0

| sin f |
(

1

nπ + x
− 1

nπ + π + x

)
dt > 0.

We therefore know that there exists a limit of extreme values limn→∞ an, so the function
has a limit at infinity and is therefore bounded.

(ii) Notice that by a change of variables t = Mx we obtain that∫ πM

0

sin t

t
dt =

∫ π

0

sin(Mx)

x
dx =

1

2

∫ π

−π

sin(Mx)

x
dx. (1)
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This identity is useful because we will be able to calculate the limit of the expression on
the right hand side as M → ∞. First of all, we know that for each positive integer N it
holds that

1

2π

∫ π

−π
DN(x)dx = 1 ⇔

∫ π

−π

sin((N + 1/2)x)

sin(x/2)
dx = 2π.

Secondly, we consider the function g(x) = 1/ sin(x/2)−2/x. We show that g is continuous
on the interval [−π, π]. On this interval, sin(x/2) is nonzero except for x = 0. At this
point we have the Taylor series expansion

sin
x

2
=
x

2
+ ε(x)x3,

where ε(x) is bounded around x = 0. Thus

lim
x→0

(
1

sin x
2

− 2

x

)
= lim

x→0

x− 2 sin x
2

x sin x
2

= lim
x→0
− 2ε(x)x3

x(x/2 + ε(x)x3)
= 0.

We now see that∫ π

−π
sin((N + 1/2)x)g(x)dx =

1

2i

∫ π

−π

(
ei(N+1/2)x − e−i(N+1/2)x

)
g(x)dx,

where the right hand side converges to zero as N →∞ by an application of the Riemann-
Lebesgue lemma to the functions

g(x)eix/2 and g(x)e−ix/2,

both continuous on the interval [−π, π] and thus eligible for use of the theorem. Note that
here the limit is only taken over positive integers N . It follows that

0 = lim
N→∞

∫ π

−π
sin((N+1/2)x)g(x)dx = lim

N→∞

∫ π

−π
sin((N+1/2)x)

(
1

sin(x/2)
− 2

x

)
dx, (2)

and hence by (2) that

2π = lim
N→∞

∫ π

−π

sin((N + 1/2)x)

sin(x/2)
dx

= lim
N→∞

∫ π

−π

sin((N + 1/2)x)

x/2
dx

= 4 lim
N→∞

∫ (N+1/2)π

0

sin(x)

x
dx,

the last equality being a consequence of (1). The limit is still only over positive integers
N , but we would like to replace it by a limit over real numbers to conclude that

2π = 4 lim
M→∞

∫ (M+1/2)π

0

sin(x)

x
dx = 4 lim

M→∞

∫ M

0

sin(x)

x
dx = 4

∫ ∞
0

sinx

x
dx,
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where the limits are taken over real numbers M . The reason why we can take the limit
over real numbers instead of the positive integers is because the integral∫ ∞

0

sinx

x
dx = lim

M→∞

∫ M

0

sin(x)

x
dx

is known to be convergent and because for any positive number a we have that∣∣∣∣∣
∫ (N+1/2)π+a

0

sin(x)

x
dx−

∫ (N+1/2)π

0

sin(x)

x
dx

∣∣∣∣∣ ≤ a

(N + 1/2)π
,

which converges to zero as N → ∞. Hence we can always change the right endpoint of
integration to a number of the form (N + 1/2)π for integer N without changing the limit
of the integral.

We have shown that limx→∞ h(x) = π
2
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