FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 8

Exercise 1. Assume that the sequence of measurable functions f_{n} is uniformly bounded, i.e. $\left|f_{n}(x)\right| \leq C$ for all $x \in \mathbb{R}^{d}$ and $n \geq 1$, and it converges at almost every point:

$$
\lim f_{n}(x)=g(x) \quad \text { for almost every } x \in \mathbb{R}^{d}
$$

Show that the $f_{n} \rightarrow g$ in the sense of distributions.
Solution 1. Fix $\varphi \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$. We know that

$$
\int_{\mathbb{R}^{d}}\left|f_{n}(x) \varphi(x)\right| d x \leq \int_{\mathbb{R}^{d}} C|\varphi(x)| d x<\infty
$$

so we can use the dominated convergence theorem to see that

$$
\lim _{n \rightarrow \infty}\left\langle f_{n}, \varphi\right\rangle=\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{d}} f_{n}(x) \varphi(x) d x=\int_{\mathbb{R}^{d}} \lim _{n \rightarrow \infty} f_{n}(x) \varphi(x) d x=\int_{\mathbb{R}^{d}} g(x) \varphi(x) d x=\langle g, \varphi\rangle .
$$

This shows that $f_{n} \rightarrow g$ in the sense of distributions.
Exercise 2. Is the function $x^{2} \sin (x)$ the Fourier transform of a distribution? If so, determine the distribution.

Solution 2. We may compute that

$$
\begin{aligned}
<x^{2} \sin (x), g> & =\int_{\mathbb{R}} x^{2} \sin (x) g(x) d x \\
& =\int_{\mathbb{R}} \frac{1}{2 i}\left(e^{i x}-e^{-i x}\right) x^{2} g(x) d x \\
& =\frac{1}{2 i}\left(\widehat{\left(x^{2} g\right)}(-1)-\widehat{\left(x^{2} g\right)}(1)\right) \\
& =\frac{i}{2}\left(\frac{d^{2} \widehat{g}}{d x^{2}}(-1)-\frac{d^{2} \widehat{g}}{d x^{2}}(1)\right) \\
& =\frac{i}{2}\left\langle\delta_{-1}^{\prime \prime}-\delta_{1}^{\prime \prime}, \widehat{g}\right\rangle . \\
& =\frac{i}{2}\left\langle\left(\widehat{\left.\left.\delta_{-1}^{\prime \prime}-\delta_{1}^{\prime \prime}\right), g\right\rangle}\right.\right.
\end{aligned}
$$

Thus $x^{2} \sin x=\widehat{T}$, where $T=\frac{i}{2}\left(\delta_{-1}^{\prime \prime}-\delta_{1}^{\prime \prime}\right)$. Here of course δ is the Dirac delta distribution.
Exercise 3. (i) Let $f \in \mathcal{S}(\mathbb{R})$. Show that in the metric of the space $\mathcal{S}(\mathbb{R})$ it holds that $f_{\varepsilon}(x) \rightarrow f^{\prime}(x)$ as $\varepsilon \rightarrow 0^{+}$, where $f_{\varepsilon}(x):=\varepsilon^{-1}(f(x+\varepsilon)-f(x))$.
(ii) Use part (i) to verify that in a similar manner for any $f \in L^{1}(\mathbb{R})$

$$
\varepsilon^{-1}(f(x+\varepsilon)-f(x)) \rightarrow \frac{d}{d x} f \quad \text { as } \quad \varepsilon \rightarrow 0
$$

where $\frac{d}{d x} f$ is the derivative of f in the sense of distributions.
Solution 3. (i) Fix N, and note that

$$
p_{N}\left(f_{\varepsilon}-f^{\prime}\right)=\sup _{n \leq N} \sup _{x \in \mathbb{R}}\left(1+|x|^{2}\right)^{N}\left|\frac{1}{\varepsilon}\left(f^{(n)}(x+\varepsilon)-f^{(n)}(x)\right)-f^{(n+1)}(x)\right| .
$$

We now estimate the expression inside. By the mean value theorem there exists $y \in$ $[x, x+\varepsilon]$ so that

$$
\frac{1}{\varepsilon}\left(f^{(n)}(x+\varepsilon)-f^{(n)}(x)\right)=f^{(n+1)}(y)
$$

Similarly there exists $z \in[x, y]$ such that

$$
f^{(n+1)}(y)-f^{(n+1)}(x)=f^{(n+2)}(z)(y-x)
$$

Thus

$$
\left|\frac{1}{\varepsilon}\left(f^{(n)}(x+\varepsilon)-f^{(n)}(x)\right)-f^{(n+1)}(x)\right|=\left|f^{(n+2)}(z)\right||y-x| \leq \varepsilon\left|f^{(n+2)}(z)\right|
$$

Note also that since $|z-x| \leq \varepsilon$, we have for sufficiently small ε that

$$
\left(1+|x|^{2}\right)^{N} \leq 2^{N}\left(1+|z|^{2}\right)^{N}
$$

The exact value of the constant 2^{N} here doesn't really matter, but the proof of this estimate can be done as follows:

$$
|x| \leq|z|+\varepsilon \Rightarrow|x|^{2} \leq|z|^{2}+2 \varepsilon|z|+\varepsilon \Rightarrow 1+|x|^{2} \leq 1+2 \varepsilon+(1+\varepsilon)|z|^{2} \leq 2\left(1+|z|^{2}\right)
$$

By combining everything we finally get that

$$
\begin{aligned}
p_{N}\left(f_{\varepsilon}-f^{\prime}\right) & \leq \sup _{n \leq N} \sup _{z \in \mathbb{R}} 2^{N}\left(1+|z|^{2}\right)^{N} \varepsilon\left|f^{(n+2)}(z)\right| \\
& \leq \varepsilon 2^{N} p_{N+2}(f) .
\end{aligned}
$$

This shows that $f_{\varepsilon} \rightarrow f^{\prime}$ in the topology of $\mathcal{S}(\mathbb{R})$ as $\varepsilon \rightarrow 0$.
(ii) Let $g \in \mathcal{S}(\mathbb{R})$. We compute that

$$
\begin{aligned}
<f_{\varepsilon}, g> & =\int_{-\infty}^{\infty} \frac{1}{\varepsilon}(f(x+\varepsilon)-f(x)) g(x) d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\varepsilon}(g(x-\varepsilon)-g(x)) f(x) d x \\
& =\int_{-\infty}^{\infty} g_{-\varepsilon} f(x) d x
\end{aligned}
$$

Applying part (i) for the function $h(x)=g(-x)$ shows that the functions $g_{-\varepsilon}$ converge uniformly to $-g^{\prime}$ as $\varepsilon \rightarrow 0$ so we can use dominated convergence to conclude that

$$
\lim _{\varepsilon \rightarrow 0}<f_{\varepsilon}, g>=-\int_{-\infty}^{\infty} g^{\prime}(x) f(x) d x=-<f, g^{\prime}>=<f^{\prime}, g>
$$

This shows that $\lim _{\varepsilon \rightarrow 0} f_{\varepsilon}=f^{\prime}$ in $\mathcal{S}^{\prime}(\mathbb{R})$.
Exercise 4. (i) Show that $\left\langle\mathcal{F}^{-1} T, g\right\rangle=\left\langle T, \mathcal{F}^{-1} g\right\rangle$ for all $T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ and $g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.
(ii) Verify that $\mathcal{F}^{4} \lambda=(2 \pi)^{2 d} \lambda$ for any $\lambda \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$.

Solution 4. (i) Let us show that defining the inverse Fourier transform \mathcal{F}^{-1} on \mathcal{S}^{\prime} by

$$
\left\langle\mathcal{F}^{-1} T, g\right\rangle=\left\langle T, \mathcal{F}^{-1} g\right\rangle
$$

actually gives an inverse of the Fourier transform. This is easily seen since

$$
\left\langle\mathcal{F}^{-1} \widehat{T}, g\right\rangle=\left\langle\widehat{T}, \mathcal{F}^{-1} g\right\rangle=\left\langle T, \mathcal{F} \mathcal{F}^{-1} g\right\rangle=\langle T, g\rangle
$$

and

$$
\left\langle\mathcal{F} \mathcal{F}^{-1} T, g\right\rangle=\left\langle\mathcal{F}^{-1} T, \widehat{g}\right\rangle=\left\langle T, \mathcal{F}^{-1} \widehat{g}\right\rangle=\langle T, g\rangle .
$$

(ii) Recall that for any $g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ we have $\left(\mathcal{F}^{2} g\right)(x)=(2 \pi)^{d} g(-x)$, which implies that $\left(\mathcal{F}^{4} g\right)(x)=(2 \pi)^{2 d} g(x)$. Now we simply compute

$$
\left\langle\mathcal{F}^{4} \lambda, g\right\rangle=\left\langle\lambda, \mathcal{F}^{4} g\right\rangle=\left\langle\lambda,(2 \pi)^{2 d} g\right\rangle=\left\langle(2 \pi)^{2 d} \lambda, g\right\rangle .
$$

Exercise 5. Let $K \in L^{1}$ with $\int_{\mathbb{R}^{d}} K(x) d x=1$ and set $K_{\varepsilon}(x):=\varepsilon^{-d} K(x / \varepsilon)$ for any $\varepsilon>0$. Prove that in the sense of distributions

$$
\lim _{\varepsilon \rightarrow 0^{+}} K_{\varepsilon}=\delta_{0}
$$

Solution 5. Fix $\varphi \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ and $\nu>0$. As φ is continuous, there is some $\delta>0$ such that $|\varphi(x)-\varphi(0)|<\nu$ whenever $|x|<\delta$.
Now we compute

$$
\begin{aligned}
\left|\left\langle K_{\varepsilon}, \varphi\right\rangle-\left\langle\delta_{0}, \varphi\right\rangle\right| & =\left|\int_{\mathbb{R}^{d}} K_{\varepsilon}(x) \varphi(x) d x-\varphi(0)\right|=\left|\int_{\mathbb{R}^{d}} K_{\varepsilon}(x)[\varphi(x)-\varphi(0)] d x\right| \\
& \leq \int_{|x|<\delta}\left|K_{\varepsilon}(x)\right||\varphi(x)-\varphi(0)| d x+\int_{|x| \geq \delta}\left|K_{\varepsilon}(x)\right||\varphi(x)-\varphi(0)| d x \\
& \leq \nu \int_{|x|<\delta}\left|K_{\varepsilon}(x)\right| d x+2 p_{0}(\varphi) \int_{|x| \geq \delta}\left|K_{\varepsilon}(x)\right| d x \\
& \leq \nu \int_{\mathbb{R}^{d}}|K(x)| d x+2 p_{0}(\varphi) \int_{|x| \geq \delta / \varepsilon}|K(x)| d x
\end{aligned}
$$

In last step we used the change of variables. The first term is bounded by $\nu\|K\|_{L^{1}}$ and the second term converges to 0 by the dominated convergence theorem. This means that

$$
\limsup _{\varepsilon \rightarrow 0+}\left|\left\langle K_{\varepsilon}, \varphi\right\rangle-\left\langle\delta_{0}, \varphi\right\rangle\right| \leq \nu\|K\|_{L^{1}} .
$$

As ν was arbitrary, the claim follows.
Exercise 6. Show that $f(x)=\log |x| \in \mathcal{S}^{\prime}(\mathbb{R})$ and that the distributional derivative of f is

$$
\frac{d}{d x}(\log |x|)=\text { p.v. } \frac{1}{x}
$$

Solution 6. The function $\log |x|$ is L^{1}-integrable around $x=0$ and grows slower than a polynomial as $|x| \rightarrow \infty$. This easily shows that it defines a tempered distribution on \mathbb{R}. We now compute that

$$
\begin{aligned}
\left\langle\frac{d}{d x} \log \right| x|, g\rangle= & -\langle\log | x\left|, \frac{d}{d x} g\right\rangle \\
= & -\int_{-\infty}^{\infty} \log |x| g^{\prime}(x) d x \\
= & -\int_{-\infty}^{0} \log (-x) g^{\prime}(x) d x-\int_{0}^{\infty} \log (x) g^{\prime}(x) d x \\
= & -\lim _{\varepsilon \rightarrow 0} \int_{-1 / \varepsilon}^{-\varepsilon} \log (-x) g^{\prime}(x) d x-\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{1 / \varepsilon} \log (x) g^{\prime}(x) d x \\
= & \lim _{\varepsilon \rightarrow 0}(-\log (\varepsilon) g(-\varepsilon)+\log (1 / \varepsilon) g(-1 / \varepsilon)-\log (1 / \varepsilon) g(1 / \varepsilon)+\log (\varepsilon) g(\varepsilon)) \\
& \quad+\lim _{\varepsilon \rightarrow 0} \int_{-1 / \varepsilon}^{-\varepsilon} \frac{1}{x} g(x) d x+\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{1 / \varepsilon} \frac{1}{x} g(x) d x \\
= & 0+\left\langle\text { p.v. } \frac{1}{x}, g\right\rangle
\end{aligned}
$$

We have used integration by parts here, and dominated convergence to conclude

$$
\int_{-\infty}^{0} \log (-x) g^{\prime}(x) d x=\lim _{\varepsilon \rightarrow 0} \int_{-1 / \varepsilon}^{-\varepsilon} \log (-x) g^{\prime}(x) d x
$$

and

$$
\int_{0}^{\infty} \log (x) g^{\prime}(x) d x=\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{1 / \varepsilon} \log (x) g^{\prime}(x) d x .
$$

Additionally, since g is in $S(\mathbb{R})$ we were able to conclude that

$$
\lim _{\varepsilon \rightarrow 0} \log (1 / \varepsilon) g(-1 / \varepsilon)=\lim _{\varepsilon \rightarrow 0} \log (1 / \varepsilon) g(1 / \varepsilon)=0
$$

and

$$
\lim _{\varepsilon \rightarrow 0}(\log (\varepsilon) g(\varepsilon)-\log (\varepsilon) g(-\varepsilon))=\lim _{\varepsilon \rightarrow 0} \varepsilon \log (\varepsilon) \frac{g(\varepsilon)-g(-\varepsilon)}{\varepsilon}=0 .
$$

Thus $\frac{d}{d x} \log |x|=$ p.v. $\frac{1}{x}$.

Exercise 7. Let $\psi \in C_{0}^{\infty}(\mathbb{R})$. Determine the Fourier transform of the distribution λ, where

$$
\langle\lambda, g\rangle:=\int_{\mathbb{R}} \psi(u) g(u, 0) d u \quad \text { for all } \quad g \in \mathcal{S}\left(\mathbb{R}^{2}\right)
$$

Solution 7. By the definition of the Fourier transform for distributions,

$$
\begin{aligned}
\langle\widehat{\lambda}, g\rangle & =\langle\lambda, \widehat{g}\rangle=\int_{\mathbb{R}} \psi(u) \widehat{g}(u, 0) d u \\
& =\int_{\mathbb{R}} \psi(u) \int_{\mathbb{R}^{2}} e^{i u x} g(x, y) d x d y d u \\
& =\int_{\mathbb{R}}^{2} g(x, y) \int_{\mathbb{R}} \psi(u) e^{i u x} d u d x d y \\
& =\int_{\mathbb{R}}^{2} g(x, y) \widehat{\psi}(x) d x d y .
\end{aligned}
$$

We have shown that $\hat{\lambda}$ is a function with

$$
\widehat{\lambda}(x, y)=\widehat{\psi}(x) .
$$

Exercise 8^{*}. (i) Define $h(x):=\int_{0}^{x} \frac{\sin t}{t} d t$. Show that $h:[0, \infty) \rightarrow \mathbb{R}$ is a bounded function.
(ii) Determine $\lim _{x \rightarrow \infty} h(x)=\int_{0}^{\infty} \frac{\sin t}{t} d t$ by considering the function

$$
g(t):=\frac{1}{\sin (t / 2)}-\frac{2}{t}
$$

Solution 8*. (i) First of all, h is continuous and $h(0)=1$. We see that h has extrema in points $x=n \pi$ for any positive integer n. Now, if we consider the sequence $a_{n}=h(n \pi)-$ $h((n-1) \pi)$, we see that $a_{n}>0$ exactly when n is odd. Additionally, $\left|a_{n}\right| \leq \pi /(n-1)$, so $a_{n} \rightarrow 0$ as $n \rightarrow \infty$.
We also see that the sequence $\left|a_{n}\right|$ is decreasing:

$$
\left|a_{n}\right|-\left|a_{n+1}\right|=\int_{0}^{\pi}|\sin f|\left(\frac{1}{n \pi+x}-\frac{1}{n \pi+\pi+x}\right) d t>0 .
$$

We therefore know that there exists a limit of extreme values $\lim _{n \rightarrow \infty} a_{n}$, so the function has a limit at infinity and is therefore bounded.
(ii) Notice that by a change of variables $t=M x$ we obtain that

$$
\begin{equation*}
\int_{0}^{\pi M} \frac{\sin t}{t} d t=\int_{0}^{\pi} \frac{\sin (M x)}{x} d x=\frac{1}{2} \int_{-\pi}^{\pi} \frac{\sin (M x)}{x} d x . \tag{1}
\end{equation*}
$$

This identity is useful because we will be able to calculate the limit of the expression on the right hand side as $M \rightarrow \infty$. First of all, we know that for each positive integer N it holds that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} D_{N}(x) d x=1 \quad \Leftrightarrow \quad \int_{-\pi}^{\pi} \frac{\sin ((N+1 / 2) x)}{\sin (x / 2)} d x=2 \pi
$$

Secondly, we consider the function $g(x)=1 / \sin (x / 2)-2 / x$. We show that g is continuous on the interval $[-\pi, \pi]$. On this interval, $\sin (x / 2)$ is nonzero except for $x=0$. At this point we have the Taylor series expansion

$$
\sin \frac{x}{2}=\frac{x}{2}+\varepsilon(x) x^{3},
$$

where $\varepsilon(x)$ is bounded around $x=0$. Thus

$$
\lim _{x \rightarrow 0}\left(\frac{1}{\sin \frac{x}{2}}-\frac{2}{x}\right)=\lim _{x \rightarrow 0} \frac{x-2 \sin \frac{x}{2}}{x \sin \frac{x}{2}}=\lim _{x \rightarrow 0}-\frac{2 \varepsilon(x) x^{3}}{x\left(x / 2+\varepsilon(x) x^{3}\right)}=0 .
$$

We now see that

$$
\int_{-\pi}^{\pi} \sin ((N+1 / 2) x) g(x) d x=\frac{1}{2 i} \int_{-\pi}^{\pi}\left(e^{i(N+1 / 2) x}-e^{-i(N+1 / 2) x}\right) g(x) d x
$$

where the right hand side converges to zero as $N \rightarrow \infty$ by an application of the RiemannLebesgue lemma to the functions

$$
g(x) e^{i x / 2} \quad \text { and } \quad g(x) e^{-i x / 2}
$$

both continuous on the interval $[-\pi, \pi]$ and thus eligible for use of the theorem. Note that here the limit is only taken over positive integers N. It follows that

$$
\begin{equation*}
0=\lim _{N \rightarrow \infty} \int_{-\pi}^{\pi} \sin ((N+1 / 2) x) g(x) d x=\lim _{N \rightarrow \infty} \int_{-\pi}^{\pi} \sin ((N+1 / 2) x)\left(\frac{1}{\sin (x / 2)}-\frac{2}{x}\right) d x \tag{2}
\end{equation*}
$$

and hence by (2) that

$$
\begin{aligned}
2 \pi & =\lim _{N \rightarrow \infty} \int_{-\pi}^{\pi} \frac{\sin ((N+1 / 2) x)}{\sin (x / 2)} d x \\
& =\lim _{N \rightarrow \infty} \int_{-\pi}^{\pi} \frac{\sin ((N+1 / 2) x)}{x / 2} d x \\
& =4 \lim _{N \rightarrow \infty} \int_{0}^{(N+1 / 2) \pi} \frac{\sin (x)}{x} d x
\end{aligned}
$$

the last equality being a consequence of (1). The limit is still only over positive integers N, but we would like to replace it by a limit over real numbers to conclude that

$$
2 \pi=4 \lim _{M \rightarrow \infty} \int_{0}^{(M+1 / 2) \pi} \frac{\sin (x)}{x} d x=4 \lim _{M \rightarrow \infty} \int_{0}^{M} \frac{\sin (x)}{x} d x=4 \int_{0}^{\infty} \frac{\sin x}{x} d x
$$

where the limits are taken over real numbers M. The reason why we can take the limit over real numbers instead of the positive integers is because the integral

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\lim _{M \rightarrow \infty} \int_{0}^{M} \frac{\sin (x)}{x} d x
$$

is known to be convergent and because for any positive number a we have that

$$
\left|\int_{0}^{(N+1 / 2) \pi+a} \frac{\sin (x)}{x} d x-\int_{0}^{(N+1 / 2) \pi} \frac{\sin (x)}{x} d x\right| \leq \frac{a}{(N+1 / 2) \pi}
$$

which converges to zero as $N \rightarrow \infty$. Hence we can always change the right endpoint of integration to a number of the form $(N+1 / 2) \pi$ for integer N without changing the limit of the integral.
We have shown that $\lim _{x \rightarrow \infty} h(x)=\frac{\pi}{2}$

