FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 8
Exercise 1. Assume that the sequence of measurable functions f,, is uniformly bounded, i.e.
|fu(z)] < C for all z € R* and n > 1, and it converges at almost every point:
lim f,(z) = g(z) for almost every z € RY.

Show that the f,, — g in the sense of distributions.

Solution 1. Fix ¢ € S'(R?). We know that
/Rd ful@)pl)] de < /R Clo()| dz < oo,

so we can use the dominated convergence theorem to see that
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This shows that f,, — ¢ in the sense of distributions.

Exercise 2. Is the function z? sin(z) the Fourier transform of a distribution ? If so, determine
the distribution.

Solution 2. We may compute that
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Thus 22sinz = T, where T = (8", —6Y). Here of course ¢ is the Dirac delta distribution.

Exercise 3. (i) Let f € S(R). Show that in the metric of the space S(R) it holds that
f-(z) = f'(z) as e — 0F, where f.(z) ="' (f(z+¢) — f(z)).



(ii) Use part (i) to verify that in a similar manner for any f € L'(R)

5_1(f(x—|—5)—f(x)) — %f as ¢ — 0,

where % f is the derivative of f in the sense of distributions.

Solution 3. (i) Fix N, and note that
1
px(fe = f) = supsup(1+ 2™ | = (f™ (@ + &) = f (@) = fF ().
n<N zeR €

We now estimate the expression inside. By the mean value theorem there exists y €

[z, 2 4 €] so that
§<f<"> (x+) = [ () = f" D).

Similarly there exists z € [z, y] such that
Fo ) = (@) = fr () (y — ).

Thus
%(f“” (z+e) = f7(2) = FO V@) = [F2 )| |y — 2 < e[f"2 ()]

Note also that since |z — z| < e, we have for sufficiently small ¢ that
L+ =)™ < 2¥(1+ |21

The exact value of the constant 2V here doesn’t really matter, but the proof of this estimate
can be done as follows:

2| < |z]+e = |22 < 2P+ 2|zl +e = 1+ |22 <142+ (1+¢)|z> <2(1 + |2%).
By combining everything we finally get that

py(fe = f') < supsup 2V (1 + |2*)Ve | fF2)(2)]
n<N zeR

< e2%pna(f).

This shows that f. — f’ in the topology of S(R) as ¢ — 0.
(ii) Let g € S(R). We compute that

<fag> = [ U+ - f@)g@)ds

o0

- / "Ly — o) — g@) fla)da

oo €

= /_OO g--f(z)dz.

[e.e]



Applying part (i) for the function h(x) = g(—x) shows that the functions ¢g_. converge
uniformly to —¢’ as € — 0 so we can use dominated convergence to conclude that

oo

li_r>r(1]<f€,g>:—/ G f@)dr = — < fid >=<f.g>

—00

This shows that lim. o f. = f" in S'(R).
Exercise 4. (i) Show that < F~'T,g > =< T,F g > forall T € S'(R?)
and g € S(RY).
(ii) Verify that F*\ = (27)%\ for any A € S'(RY).
Solution 4. (i) Let us show that defining the inverse Fourier transform F~! on &' by
(F7'T,g) =(T,F'g)
actually gives an inverse of the Fourier transform. This is easily seen since
(F'T.g) = (T.F 'g) = (T.FF 'g) =

and
(FF'T,g) =(F'T\g) = (T, F'g) = (T.g).

(ii) Recall that for any g € S(R?) we have (F2g)(x) = (27)%g(—z), which implies that
(Flg)(x) = (27)%*g(x). Now we simply compute
(FXg) = (A Flg) = (A, 2m)*'g) = ((2m)*'\, g) .

Exercise 5. Let K € L' with fRd K(x)dr = 1 and set K.(z) := e K (z/e) for any € > 0.
Prove that in the sense of distributions

hm Ke = 50.

e—0t

Solution 5. Fix ¢ € S'(R?) and v > 0. As ¢ is continuous, there is some J§ > 0 such that
lp(z) — ¢(0)| < v whenever |x| < 4.

Now we compute

(o) — Gong r—]/ K.(o)p(@) do — >’:‘/Rdf<€<x>[¢<x>_¢<o>]dx
</ Kérm Dliple) = ¢O)ldo + | @ llote) — (o) de

<v /| Al 2p0f) / K. ()| da

|z|>6

<v /R K ()] d + 2polp) /| PLCIE



In last step we used the change of variables. The first term is bounded by v| K||;1 and
the second term converges to 0 by the dominated convergence theorem. This means that

limsup (K, ) — (o, )| < v[|K]|L:.
e—0+

As v was arbitrary, the claim follows.

Exercise 6. Show that f(z) =log|z| € §'(R) and that the distributional derivative of f is

1

d
%(108;’1") = pv.—

Solution 6. The function log|z| is L'-integrable around x = 0 and grows slower than a
polynomial as |x| — co. This easily shows that it defines a tempered distribution on R.
We now compute that

i10 || = —( log |z| 4
d.l? g 9 - g ’d.fl?g

—~ [ loglaly (a)d

—0o0

= [ tog)@ae - [ ostarg oy

—& 1/e
= —lim log(—x)¢'(z)dx — lim log(x)g (z)dx

e—0 —1/e e—0

= lim (—log(¢)g(—¢) +log(1/e)g(—1/¢) — log(1/€)g(1/2) + log(c)g(¢))

1 Ve
+ lim —g(x)dx + lim/ —g(x)dx
e—0 ~1/e €T e—0 c €T

1
=0+ <p.v.—, g>
x

We have used integration by parts here, and dominated convergence to conclude
0 —€
/ log(—z)g'(z) dz = lim log(—z)g'(z) dx
—00 e—0 —1/e

and o e
/ log(x)g'(z) do = lim/ log(z)g'(z) d.
0 e=0 J,_
Additionally, since g is in S(R) we were able to conclude that
lim log(1/2)g(~1/<) = limlog(1/<)g(1/<) = 0
and

lim (log(=)g(c) — log(e)g(—2)) = gg%glog@w

=0.

Thus - log |z| = p.v.i.



Exercise 7. Let ¢ € C§°(R). Determine the Fourier transform of the distribution A, where
(A, g) = /Rw(u)g(u,O) du  forall gec S(R?).

Solution 7. By the definition of the Fourier transform for distributions,

(g) = (A7) = /w

—/Rw(u) /]RZ’ e g(z,y) dr dy du

2 .
= [ ste) [ wtw)e dudedy

= /R g(x,y)Y(z) dz dy.

We have shown that /): is a function with

-~

N.y) = ().
t
Exercise 8*. (i) Define h(x / ﬂdt Show that A : [0,00) — R is a bounded function.

t
(ii) Determine lim, o, h(z) = / %dt by considering the function
0

1 2
9lt) = sin(t/2)  t

Solution 8*. (i) First of all, h is continuous and h(0) = 1. We see that h has extrema in
points x = nr for any positive integer n. Now, if we consider the sequence a, = h(nm) —
h((n — 1)), we see that a,, > 0 exactly when n is odd. Additionally, |a,| < 7/(n —1), so
a, — 0 as n — oo.

We also see that the sequence |a,| is decreasing:

1
|a | ]a H’ / ]smf| <n7r+x mr—i—w—i—x)

We therefore know that there exists a limit of extreme values lim,,_,, a,, so the function
has a limit at infinity and is therefore bounded.

(ii) Notice that by a change of variables t = Mz we obtain that

/0 sint _/O”dezlf sin(Mz) ). (1)

t x 2/ x

>



This identity is useful because we will be able to calculate the limit of the expression on
the right hand side as M — oo. First of all, we know that for each positive integer N it

holds that - (V4 1/2
—/ Dy (z)dx = & / sin((V + 1/2)z )da: = 2.
T ) sin(x/2)

Secondly, we consider the function g(z) = 1/sin(x/2) —2/x. We show that g is continuous
on the interval [—m,7]. On this interval, sin(z/2) is nonzero except for x = 0. At this
point we have the Taylor series expansion

. x
sin= ==
2
where () is bounded around z = 0. Thus

1 2 — 2sin % 2 3
i (= 2) =g L2 g 2@
@0 \sin§ @0 rsin§ v—=0  x(x/2 +e(x)x?)

We now see that

s 1 T ) '
/ sin((N + 1/2)3;)9(3;)d$ — 2_2 (61(N+1/2):c _ 6—2(N+1/2)x) g(x)dx,

—Tr

where the right hand side converges to zero as N — oo by an application of the Riemann-
Lebesgue lemma to the functions

ix/2 —iz/2
’

g(x)e and g(x)e
both continuous on the interval [—7, 7] and thus eligible for use of the theorem. Note that

here the limit is only taken over positive integers N. It follows that

N 1 2

0= lim sin((N+1/2)x)g(z)dx = ]\}1_{1;0 /_7r sin((N+1/2)x) (m — —) dx, (2)

N—o0 o x

and hence by (2) that

T sin((N +1/2)x)

2r = i d
= . sin(x/2) v
Tsin((N +1/2
= lim / sin((V +1/ >$)dac
N—oo r [E/Q
(N+1/2)7
— 4 lim RUlCI
N—oo 0 x

the last equality being a consequence of (1). The limit is still only over positive integers
N, but we would like to replace it by a limit over real numbers to conclude that

(M+1/2)7 Mo o .
27 =4 lim &(m)daj =4 lim / de = 4/ %dx,
0 0

M—o0 0 €T M—o0 T T



where the limits are taken over real numbers M. The reason why we can take the limit
over real numbers instead of the positive integers is because the integral

00 M -
/ sing oy sm(x)dJ;
0

xT M—o0 0 xT

is known to be convergent and because for any positive number a we have that

/(N+1/2)7r+a SiH(ZL’) g /(N+1/2)7r Sin(l‘) .
0 0

i T

(N +1/2)x’

<

which converges to zero as N — oo. Hence we can always change the right endpoint of
integration to a number of the form (N + 1/2)7 for integer N without changing the limit
of the integral.

We have shown that lim, o h(z) = 5



