FOURIER ANALYSIS. (Fall 2016)

8. EXERCISES (Fri 25.11, 10-12 in room C322)

1. Assume that the sequence of measurable functions f_n is uniformly bounded, i.e. $|f_n(x)| \leq C$ for all $x \in \mathbf{R}^n$ and $n \geq 1$, and it converges at almost every point:

 $\lim f_n(x) = g(x)$ for almost every $x \in \mathbf{R}^d$.

Show that the $f_n \to g$ in the sense of distributions.

- **2.** Is the function $x^2 \sin(x)$ the Fourier transform of a distribution ? If so, determine the distribution.
- **3.** (i) Let $f \in \mathcal{S}(\mathbf{R})$. Show that in the metric of the space $\mathcal{S}(\mathbf{R})$ it holds that $f_{\varepsilon}(x) \to f'(x)$ as $\varepsilon \to 0^+$, where $f_{\varepsilon}(x) := \varepsilon^{-1} (f(x + \varepsilon) f(x))$.

(ii) Use part (i) to verify that in a similar manner for any $f \in L^1(\mathbf{R})$

$$\varepsilon^{-1}(f(x+\varepsilon) - f(x)) \to \frac{d}{dx}f \text{ as } \varepsilon \to 0,$$

where $\frac{d}{dx}f$ is the derivative of f in the sense of distributions.

- 4. (i) Show that $\langle \mathcal{F}^{-1}T, g \rangle = \langle T, \mathcal{F}^{-1}g \rangle$ for all $T \in \mathcal{S}'(\mathbf{R}^d)$ and $q \in \mathcal{S}(\mathbf{R}^d)$.
 - (ii) Verify that $\mathcal{F}^4 \lambda = (2\pi)^{2d} \lambda$ for any $\lambda \in \mathcal{S}'(\mathbf{R}^d)$.
- 5. Let $K \in L^1$ with $\int_{\mathbf{R}^d} K(x) dx = 1$ and set $K_{\varepsilon}(x) := \varepsilon^{-d} K(x/\varepsilon)$ for any $\varepsilon > 0$. Prove that in the sense of distributions

$$\lim_{\varepsilon \to 0^+} K_\varepsilon = \delta_0$$

6. Show that $f(x) = \log |x| \in \mathcal{S}'(\mathbf{R})$ and that the distributional derivative of f is

$$\frac{d}{dx}(\log|x|) = \mathbf{p}.\mathbf{v}.\frac{1}{x}$$

7. Let $\psi \in C_0^{\infty}(\mathbf{R})$. Determine the Fourier transform of the distribution λ , where

$$\langle \lambda, g \rangle := \int_{\mathbf{R}} \psi(u) g(u, 0) du$$
 for all $g \in \mathcal{S}(\mathbf{R}^2)$.

8^{*1} (i) Define $h(x) := \int_0^x \frac{\sin t}{t} dt$. Show that $h : [0, \infty) \to \mathbf{R}$ is a bounded function.

(ii) Determine $\lim_{x\to\infty} h(x) = \int_0^\infty \frac{\sin t}{t} dt$ by considering the function

$$g(t) := \frac{1}{\sin(t/2)} - \frac{2}{t}$$

•

¹These *-exercises are extras for afficinadoes, not required to get full points from exercises

Hints for some of the exercises:

T.2: [Recall what is the Fourier transform of an exponential and apply the basic rules of calculus for Fourier transforms of distributions.]

T.5: [Suggestion: do it directly, or prove the same convergence for the Fourier transforms!]

T.6: [Compute first the derivative of $\chi_{|x| \ge \varepsilon} \log(|x|)$. Use the fact that for test functions $|g(u) - g(-u)| \le C|u|$.]

T.8: [Part (i) is not difficult! In part (ii), recall from the theory of the Fourier series that the Dirichlet kernel can be expressed in terms of sine functions.]