FOURIER ANALYSIS. (Fall 2016)

8. EXERCISES (Fri 25.11, 10-12 in room C322)

1. Assume that the sequence of measurable functions f_{n} is uniformly bounded, i.e. $\left|f_{n}(x)\right| \leq C$ for all $x \in \mathbf{R}^{n}$ and $n \geq 1$, and it converges at almost every point:

$$
\lim f_{n}(x)=g(x) \quad \text { for almost every } x \in \mathbf{R}^{d}
$$

Show that the $f_{n} \rightarrow g$ in the sense of distributions.
2. Is the function $x^{2} \sin (x)$ the Fourier transform of a distribution ? If so, determine the distribution.
3. (i) Let $f \in \mathcal{S}(\mathbf{R})$. Show that in the metric of the space $\mathcal{S}(\mathbf{R})$ it holds that $f_{\varepsilon}(x) \rightarrow f^{\prime}(x)$ as $\varepsilon \rightarrow 0^{+}$, where $f_{\varepsilon}(x):=\varepsilon^{-1}(f(x+\varepsilon)-f(x))$.
(ii) Use part (i) to verify that in a similar manner for any $f \in L^{1}(\mathbf{R})$

$$
\varepsilon^{-1}(f(x+\varepsilon)-f(x)) \rightarrow \frac{d}{d x} f \quad \text { as } \quad \varepsilon \rightarrow 0
$$

where $\frac{d}{d x} f$ is the derivative of f in the sense of distributions.
4. (i) Show that $<\mathcal{F}^{-1} T, g>=<T, \mathcal{F}^{-1} g>$ for all $T \in \mathcal{S}^{\prime}\left(\mathbf{R}^{d}\right)$
and $g \in \mathcal{S}\left(\mathbf{R}^{d}\right)$.
(ii) Verify that $\mathcal{F}^{4} \lambda=(2 \pi)^{2 d} \lambda$ for any $\lambda \in \mathcal{S}^{\prime}\left(\mathbf{R}^{d}\right)$.
5. Let $K \in L^{1}$ with $\int_{\mathbf{R}^{d}} K(x) d x=1$ and set $K_{\varepsilon}(x):=\varepsilon^{-d} K(x / \varepsilon)$ for any $\varepsilon>0$. Prove that in the sense of distributions

$$
\lim _{\varepsilon \rightarrow 0^{+}} K_{\varepsilon}=\delta_{0} .
$$

6. Show that $f(x)=\log |x| \in \mathcal{S}^{\prime}(\mathbf{R})$ and that the distributional derivative of f is

$$
\frac{d}{d x}(\log |x|)=\text { p.v. } \frac{1}{x}
$$

7. Let $\psi \in C_{0}^{\infty}(\mathbf{R})$. Determine the Fourier transform of the distribution λ, where

$$
\langle\lambda, g\rangle:=\int_{\mathbf{R}} \psi(u) g(u, 0) d u \quad \text { for all } \quad g \in \mathcal{S}\left(\mathbf{R}^{2}\right)
$$

$\mathbf{8}^{* 1}$ (i) Define $h(x):=\int_{0}^{x} \frac{\sin t}{t} d t$. Show that $h:[0, \infty) \rightarrow \mathbf{R}$ is a bounded function.
(ii) Determine $\lim _{x \rightarrow \infty} h(x)=\int_{0}^{\infty} \frac{\sin t}{t} d t$ by considering the function

$$
g(t):=\frac{1}{\sin (t / 2)}-\frac{2}{t}
$$

[^0]
Hints for some of the exercises:

T.2: [Recall what is the Fourier transform of an exponential and apply the basic rules of calculus for Fourier transforms of distributions.]
T.5: [Suggestion: do it directly, or prove the same convergence for the Fourier transforms!] T.6: [Compute first the derivative of $\chi_{|x| \geq \varepsilon} \log (|x|)$. Use the fact that for test functions $|g(u)-g(-u)| \leq C|u|$.]
T.8: [Part (i) is not difficult! In part (ii), recall from the theory of the Fourier series that the Dirichlet kernel can be expressed in terms of sine functions.]

[^0]: ${ }^{1}$ These $*$-exercises are extras for afficinadoes, not required to get full points from exercises

