FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 7

Exercise 1. Prove in detail that $\rho(f_n, g) \to 0$ if and only if $p_N(f_n - g) \to 0$ for every $N \ge 0$.

Solution 1. Direction \Rightarrow . We assume that $\rho(f_n, f) \to 0$. Suppose to the contrary that there exists N_0 such that $p_{N_0}(f_n, f) \ge \epsilon$ for infinitely many n. Then for such n

$$\rho(f_n, f) = \sum_{N=0}^{\infty} 2^{-N} \frac{p_N(f_n - f)}{1 + p_N(f_n - f)} \ge 2^{-N_0} \frac{p_{N_0}(f_n - f)}{1 + p_{N_0}(f_n - f)} \ge 2^{-N_0} \frac{\epsilon}{1 + \epsilon} > 0,$$

a contradiction.

Direction \Leftarrow . Assume that $p_N(f_n - f) \to 0$ for all N. Let $\epsilon > 0$ and N_0 be a large number to be chosen later. We estimate that

$$\rho(f_n, f) = \sum_{N=0}^{\infty} 2^{-N} \frac{p_N(f_n - f)}{1 + p_N(f_n - f)}$$

= $\sum_{N=0}^{N_0} 2^{-N} \frac{p_N(f_n - f)}{1 + p_N(f_n - f)} + \sum_{N=N_0}^{\infty} 2^{-N} \frac{p_N(f_n - f)}{1 + p_N(f_n - f)}$
 $\leq \sum_{N=0}^{N_0} 2^{-N} \frac{p_N(f_n - f)}{1 + p_N(f_n - f)} + \sum_{N=N_0}^{\infty} 2^{-N}$
 $\leq \sum_{N=0}^{N_0} 2^{-N} \frac{p_N(f_n - f)}{1 + p_N(f_n - f)} + 2^{-N_0 + 1}.$

If we choose N_0 large enough, the second term will be less than $\epsilon/2$. The first term can then be estimated since it contains only finitely many terms, and for each term we can use our assumption to choose $n \ge n_0$ large enough so that $p_N(f_n - f)$ is as small as we wish. Thus we can also bound the first term by $\epsilon/2$ if we want to, which proves the claim.

Exercise 2. Prove that a linear map $\lambda : \mathcal{S}(\mathbb{R}^d) \to \mathbb{C}$ is continuous if and only if there is an index $N \ge 0$ and constant $C < \infty$ such that

$$|\lambda(g)| \le Cp_N(g)$$
 for all $g \in \mathcal{S}(\mathbb{R}^d)$.

Solution 2. By translation invariance of λ and the metric $\rho(f,g) = \rho(f-g,0)$, the fact that T is continuous is equivalent with the fact that it is continuous at zero. With this in mind, we proceed.

Direction \Leftarrow . Let f_n be a sequence converging to zero in the metric ρ . By Exercise 1 we know that $p_N(f_n) \to 0$ as $N \to \infty$. Since $|\lambda(f_n)| \leq Cp_N(f_n)$, we also know that $\lambda(f_n) \to 0$ so λ is continuous at zero.

Direction \Rightarrow . We make a proof by contradiction. Suppose that for every N and constant C there is a function $f_{N,C}$ such that

$$|\lambda(f_N)| \ge Cp_N(f_{N,C}).$$

We choose C = N to get a sequence f_N of functions for which

$$|\lambda(f_N)| \ge N p_N(f_N).$$

By linearity of T, we can scale this to assume that $p_N(f_N) = 1/N$. We prove that then $f_N \to 0$ in the metric ρ . By Exercise 1 it is enough to prove that $p_M(f_N) \to 0$ for every M. But this follows from the fact that if $N \ge M$, then by the fact that the p_M are increasing in M we get

$$p_M(f_N) \le p_N(f_N) = 1/N.$$

However,

$$|\lambda(f_N)| \ge 1,$$

so λ cannot be continuous at zero.

Exercise 3. Assume that $f \in C^{\infty}(\mathbb{R}^d)$ satisfies for any multi-index α : there exists $M = M_{\alpha}$ and $C = C_{\alpha}$ so that

$$|\partial^{\alpha} f(x)| \le C(1+|x|^2)^M$$
 for all $x \in \mathbb{R}^d$.

Show that $fg \in \mathcal{S}(\mathbb{R}^d)$ for all $g \in \mathcal{S}(\mathbb{R}^d)$ and that the map $g \mapsto fg$ is a continuous linear map from $\mathcal{S}(\mathbb{R}^d)$ to $\mathcal{S}(\mathbb{R}^d)$.

Solution 3. The function fg is smooth as a product of smooth functions, and linearity is trivial. We need to estimate the norms $p_N(fg)$. To prove that $fg \in \mathcal{S}(\mathbb{R}^d)$, we need to show that the norms are finite, and for continuity we need to estimate them by the norms of g. We use the general Leibniz formula from Exercise 8 in the previous set:

$$p_{N}(fg) = \sup_{|\alpha| \le N} \sup_{x \in \mathbb{R}^{d}} (1 + |x|^{2})^{N} |\partial^{\alpha}(fg)(x)|$$

$$= \sup_{|\alpha| \le N} \sup_{x \in \mathbb{R}^{d}} (1 + |x|^{2})^{N} \left| \sum_{\beta \le \alpha} {\alpha \choose \beta} \partial^{\beta} f(x) \partial^{\alpha - \beta} g(x) \right|$$

$$\leq \sup_{|\alpha| \le N} \sum_{\beta \le \alpha} {\alpha \choose \beta} \sup_{x \in \mathbb{R}^{d}} (1 + |x|^{2})^{N} |\partial^{\beta} \phi(x) \partial^{\alpha - \beta} g(x)|$$

$$\leq \sup_{|\alpha| \le N} \sum_{\beta \le \alpha} {\alpha \choose \beta} \sup_{x \in \mathbb{R}^{d}} C(1 + |x|^{2})^{N+M} |\partial^{\alpha - \beta} g(x)|$$

$$\leq \sup_{|\alpha| \le N} \sum_{\beta \le \alpha} {\alpha \choose \beta} Cp_{N+M}(g)$$

$$= C2^{N} p_{N+M}(g).$$

Here the constants C and M are defined by

$$C = \max\{C_{\alpha} : |\alpha| \le N\} \quad \text{and} \quad M = \max\{M_{\alpha} : |\alpha| \le N\}$$

Now the map $g \mapsto fg$ is continuous by Theorem 12.2. in the lecture notes.

- **Exercise 4.** Show that the metric space $(\mathcal{S}(\mathbb{R}^d), \rho)$ (i.e. the Schwartz space of test functions equipped with the metric ρ) is complete.
- **Solution 4.** Suppose that we have a Cauchy sequence (f_n) in the metric ρ . Then (f_n) will also be Cauchy in each of the norms p_N , which follows from the fact that

$$\frac{p_N(f_n - f_m)}{1 + p_N(f_n - f_m)} \le 2^N \sum_{N=0}^{\infty} 2^{-N} \frac{p_N(f_n - f_m)}{1 + p_N(f_n - f_m)} = 2^N \rho(f_n, f_m)$$

so if $\rho(f_n, f_m)$ is small then $p_N(f_n - f_m)$ must be small as well. Choosing N = 0, we find that (f_n) is Cauchy in the sup-norm and thus has a limit f in the sup-norm. For each multi-index α , the sequence $(\partial_{\alpha} f_n)$ is also Cauchy in the sup-norm and thus converges to some function g_{α} . By basic results about uniformly converging sequences of functions we know that $\partial^{\alpha} f = g_{\alpha}$ (see the course Analysis II). We must still prove that f_n converges to f in the metric ρ . Let $\epsilon > 0$ be arbitrary. Then there is n_0 such that $p_N(f_m - f_n) \leq \epsilon$ when $m, n \geq n_0$. Thus

$$(1+|x|^2)^N |\partial^\alpha f_n(x) - f_m(x)| \le \epsilon$$

By uniform convergence, we let $n \to \infty$ to get that

$$(1+|x|^2)^N |\partial^{\alpha} f(x) - f_m(x)| \le \epsilon.$$

This shows that $p_N(f - f_m) \to 0$ as $m \to \infty$ for every N, enough to show the convergence in the metric ρ by (ii). Obviously also f is in the Schwartz class by $p_N(f) \leq p_N(f - f_m) + p_N(f_m)$ for every N.

Exercise 5. (i) Let $a = (a_1, a_2) \in \mathbb{R}^2$ and r > 0. Show that $T \in \mathcal{S}'(\mathbb{R}^2)$, where

$$\langle T,g\rangle := \int_0^{2\pi} g(a + r(\cos(t), \sin(t))dt)$$

when $g \in \mathcal{S}(\mathbb{R}^2)$.

(ii) Verify that $T \in \mathcal{S}'(\mathbb{R})$, where

$$\langle T, \phi \rangle := \sum_{k \in \mathbb{Z}} \phi(k^2)$$

Solution 5. (i) It is clear that T is linear. As $|g(x)| \le p_0(g)$, we can estimate

$$\begin{aligned} \langle T,g\rangle &| = \left| \int_0^{2\pi} g(a + r(\cos(t), \sin(t)) \, dt \right| \le \int_0^{2\pi} |g(a + r(\cos(t), \sin(t))| \, dt \\ &\le \int_0^{2\pi} p_0(g), \, dt = 2\pi p_0(g). \end{aligned}$$

This proves by Exercise 2 that $T \in \mathcal{S}'(\mathbb{R})$.

(ii) The linearity is again clear. We know that $|\phi(x)| \leq p_1(\phi)/(1+|x|^2)$. We may now estimate

$$\langle T, \phi \rangle | = \left| \sum_{k \in \mathbb{Z}} \phi(k^2) \right| \le \sum_{k \in \mathbb{Z}} |\phi(k^2)| \le \sum_{k \in \mathbb{Z}} \frac{p_1(\phi)}{1 + k^4} = Cp_1(\phi).$$

Here $C = \sum_{k \in \mathbb{Z}} (1+k^4)^{-1}$ is the value of the sum. Exercise 2 implies that that $T \in \mathcal{S}'(\mathbb{R})$.

Exercise 6. Let $f = \chi_{[0,1]}$ be the characteristic function of an interval. What is the distribution derivative of f?

Solution 6. The distribution associated with f is T_f with

$$\langle T_f, \phi \rangle := \int_{\mathbb{R}} f(x)\phi(x) \, dx.$$

Using the definition of the distribution derivative gives

$$\langle T'_f, \phi \rangle = -\langle T_f, \phi' \rangle = -\int_{\mathbb{R}} f(x)\phi'(x) \, dx = -\int_0^1 \phi'(x) \, dx = \phi(0) - \phi(1).$$

We may write this as $f' = \delta_0 - \delta_1$ in the sense of distributions.

Exercise 7^{*}. Show that functions that grow too fast do not necessarily define distributions. More specifically, show that $e^{|x|}$ does not define an element in $\mathcal{S}'(\mathbb{R})$ in the following sense: the map $\lambda : C_0^{\infty}(\mathbb{R}) \to \mathbb{C}$, where

$$\langle \lambda, g \rangle := \int_{\mathbb{R}} e^{|x|} g(x) dx$$

does not have a continuous extension to the space $\mathcal{S}(\mathbb{R})$.

Solution 7^{*}. We will show that the condition given in Exercise 2 is not satisfied. Let $h \in C_c^{\infty}(\mathbb{R})$ be a non-trivial positive smooth function supported on the interval [1,2], and let N be arbitrary non-negative integer.

For any positive integer K we consider the function h_K defined as $h_K(x) = h(x - K)$. The function h_K is supported on the interval [K+1, K+2], and we see that for any multi-index α with $|\alpha| \leq N$ we have

$$\sup_{x \in \mathbb{R}} (1+|x|^2)^N |\partial^{\alpha} h_K(x)| \le \sup_{x \in \mathbb{R}} (1+(K+2)^2)^N |\partial^{\alpha} h(x)| \le (1+(K+2)^2)^N p_N(h).$$

In particular, $p_N(h_K) \le (1 + (K+2)^2)^N p_N(h)$

On the other hand, we have

$$|\langle \lambda, h_K \rangle| = \int_{\mathbb{R}} e^{|x|} h_K(x) dx = e^K \int_{\mathbb{R}} e^{|x|} h(x) dx = e^K \langle \lambda, h \rangle.$$

If we had $\langle \lambda, g \rangle \leq Cp_N(g)$ for any $g \in C_c^{\infty}(\mathbb{R})$, then we would have for any positive integer K

$$e^{K}\langle\lambda,h\rangle = \langle\lambda,h_{K}\rangle \leq Cp_{N}(h_{K}) \leq (1+(K+2)^{2})^{N}p_{N}(h),$$

or equivalently

$$(1 + (K+2)^2)^{-N} e^K \le p_N(h) / \langle \lambda, h \rangle.$$

But $p_N(h)/\langle \lambda, h \rangle$ is a constant while $(1 + (K+2)^2)^{-N}e^K$ grows to infinity as $K \to \infty$. This means that the inequality $\langle \lambda, g \rangle \leq Cp_N(g)$ cannot hold for all $g \in C_c^{\infty}(\mathbb{R})$. As N was arbitrary, it follows that λ cannot have a continuous extension to $\mathcal{S}(\mathbb{R})$.