
FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 7

Exercise 1. Prove in detail that ρ(fn, g)→ 0 if and only if pN(fn − g)→ 0 for every N ≥ 0.

Solution 1. Direction ⇒. We assume that ρ(fn, f) → 0. Suppose to the contrary that there
exists N0 such that pN0(fn, f) ≥ ε for infinitely many n. Then for such n

ρ(fn, f) =
∞∑
N=0

2−N
pN(fn − f)

1 + pN(fn − f)
≥ 2−N0

pN0(fn − f)

1 + pN0(fn − f)
≥ 2−N0

ε

1 + ε
> 0,

a contradiction.

Direction⇐. Assume that pN(fn− f)→ 0 for all N . Let ε > 0 and N0 be a large number
to be chosen later. We estimate that

ρ(fn, f) =
∞∑
N=0

2−N
pN(fn − f)

1 + pN(fn − f)

=

N0∑
N=0

2−N
pN(fn − f)

1 + pN(fn − f)
+

∞∑
N=N0

2−N
pN(fn − f)

1 + pN(fn − f)

≤
N0∑
N=0

2−N
pN(fn − f)

1 + pN(fn − f)
+

∞∑
N=N0

2−N

≤
N0∑
N=0

2−N
pN(fn − f)

1 + pN(fn − f)
+ 2−N0+1.

If we choose N0 large enough, the second term will be less than ε/2. The first term can
then be estimated since it contains only finitely many terms, and for each term we can use
our assumption to choose n ≥ n0 large enough so that pN(fn − f) is as small as we wish.
Thus we can also bound the first term by ε/2 if we want to, which proves the claim.

Exercise 2. Prove that a linear map λ : S(Rd) → C is continuous if and only if there is an
index N ≥ 0 and constant C <∞ such that

|λ(g)| ≤ CpN(g) for all g ∈ S(Rd).

Solution 2. By translation invariance of λ and the metric ρ(f, g) = ρ(f − g, 0), the fact that
T is continuous is equivalent with the fact that it is continuous at zero. With this in mind,
we proceed.

Direction ⇐. Let fn be a sequence converging to zero in the metric ρ. By Exercise 1 we
know that pN(fn)→ 0 as N →∞. Since |λ(fn)| ≤ CpN(fn), we also know that λ(fn)→ 0
so λ is continuous at zero.
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Direction ⇒. We make a proof by contradiction. Suppose that for every N and constant
C there is a function fN,C such that

|λ(fN)| ≥ CpN(fN,C).

We choose C = N to get a sequence fN of functions for which

|λ(fN)| ≥ NpN(fN).

By linearity of T , we can scale this to assume that pN(fN) = 1/N . We prove that then
fN → 0 in the metric ρ. By Exercise 1 it is enough to prove that pM(fN)→ 0 for every M .
But this follows from the fact that if N ≥M , then by the fact that the pM are increasing
in M we get

pM(fN) ≤ pN(fN) = 1/N.

However,
|λ(fN)| ≥ 1,

so λ cannot be continuous at zero.

Exercise 3. Assume that f ∈ C∞(Rd) satisfies for any multi-index α: there exists M = Mα

and C = Cα so that

|∂αf(x)| ≤ C(1 + |x|2)M for all x ∈ Rd.

Show that fg ∈ S(Rd) for all g ∈ S(Rd) and that the map g 7→ fg is a continuous linear
map from S(Rd) to S(Rd).

Solution 3. The function fg is smooth as a product of smooth functions, and linearity is
trivial. We need to estimate the norms pN(fg). To prove that fg ∈ S(Rd), we need to
show that the norms are finite, and for continuity we need to estimate them by the norms
of g. We use the general Leibniz formula from Exercise 8 in the previous set:

pN(fg) = sup
|α|≤N

sup
x∈Rd

(1 + |x|2)N |∂α(fg)(x)|

= sup
|α|≤N

sup
x∈Rd

(1 + |x|2)N
∣∣∣∣∣∑
β≤α

(
α

β

)
∂βf(x)∂α−βg(x)

∣∣∣∣∣
≤ sup
|α|≤N

∑
β≤α

(
α

β

)
sup
x∈Rd

(1 + |x|2)N
∣∣∂βφ(x)∂α−βg(x)

∣∣
≤ sup
|α|≤N

∑
β≤α

(
α

β

)
sup
x∈Rd

C(1 + |x|2)N+M
∣∣∂α−βg(x)

∣∣
≤ sup
|α|≤N

∑
β≤α

(
α

β

)
CpN+M(g)

= C2NpN+M(g).
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Here the constants C and M are defined by

C = max{Cα : |α| ≤ N} and M = max{Mα : |α| ≤ N}.

Now the map g 7→ fg is continuous by Theorem 12.2. in the lecture notes.

Exercise 4. Show that the metric space (S(Rd), ρ) (i.e. the Schwartz space of test functions
equipped with the metric ρ) is complete.

Solution 4. Suppose that we have a Cauchy sequence (fn) in the metric ρ. Then (fn) will
also be Cauchy in each of the norms pN , which follows from the fact that

pN(fn − fm)

1 + pN(fn − fm)
≤ 2N

∞∑
N=0

2−N
pN(fn − fm)

1 + pN(fn − fm)
= 2Nρ(fn, fm),

so if ρ(fn, fm) is small then pN(fn − fm) must be small as well. Choosing N = 0, we find
that (fn) is Cauchy in the sup-norm and thus has a limit f in the sup-norm. For each
multi-index α, the sequence (∂αfn) is also Cauchy in the sup-norm and thus converges to
some function gα. By basic results about uniformly converging sequences of functions we
know that ∂αf = gα (see the course Analysis II). We must still prove that fn converges
to f in the metric ρ. Let ε > 0 be arbitrary. Then there is n0 such that pN(fm − fn) ≤ ε
when m,n ≥ n0. Thus

(1 + |x|2)N |∂αfn(x)− fm(x)| ≤ ε

By uniform convergence, we let n→∞ to get that

(1 + |x|2)N |∂αf(x)− fm(x)| ≤ ε.

This shows that pN(f − fm)→ 0 as m→∞ for every N , enough to show the convergence
in the metric ρ by (ii). Obviously also f is in the Schwartz class by pN(f) ≤ pN(f − fm) +
pN(fm) for every N .

Exercise 5. (i) Let a = (a1, a2) ∈ R2 and r > 0. Show that T ∈ S ′(R2), where

〈T, g〉 :=

∫ 2π

0

g(a+ r(cos(t), sin(t))dt

when g ∈ S(R2).

(ii) Verify that T ∈ S ′(R), where

〈T, φ〉 :=
∑
k∈Z

φ(k2).

Solution 5. (i) It is clear that T is linear. As |g(x)| ≤ p0(g), we can estimate
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〈T, g〉| =
∣∣∣∣∫ 2π

0

g(a+ r(cos(t), sin(t)) dt

∣∣∣∣ ≤ ∫ 2π

0

|g(a+ r(cos(t), sin(t))| dt

≤
∫ 2π

0

p0(g), dt = 2πp0(g).

This proves by Exercise 2 that T ∈ S ′(R).

(ii) The linearity is again clear. We know that |φ(x)| ≤ p1(φ)/(1 + |x|2). We may now
estimate

〈T, φ〉| =

∣∣∣∣∣∣
∑
k∈Z

φ(k2)

∣∣∣∣∣∣ ≤
∑
k∈Z
|φ(k2)| ≤

∑
k∈Z

p1(φ)

1 + k4
= Cp1(φ).

Here C =
∑

k∈Z(1+k4)−1 is the value of the sum. Exercise 2 implies that that T ∈ S ′(R).

Exercise 6. Let f = χ[0,1] be the characteristic function of an interval. What is the distribution
derivative of f?

Solution 6. The distribution associated with f is Tf with

〈Tf , φ〉 :=

∫
R
f(x)φ(x) dx.

Using the definition of the distribution derivative gives

〈T ′f , φ〉 = −〈Tf , φ′〉 = −
∫
R
f(x)φ′(x) dx = −

∫ 1

0

φ′(x) dx = φ(0)− φ(1).

We may write this as f ′ = δ0 − δ1 in the sense of distributions.

Exercise 7∗. Show that functions that grow too fast do not necessarily define distributions.
More specifically, show that e|x| does not define an element in S ′(R) in the following sense:
the map λ : C∞0 (R)→ C, where

〈λ, g〉 :=

∫
R
e|x|g(x)dx

does not have a continuous extension to the space S(R).

Solution 7∗. We will show that the condition given in Exercise 2 is not satisfied. Let h ∈
C∞c (R) be a non-trivial positive smooth function supported on the interval [1, 2], and let
N be arbitrary non-negative integer.
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For any positive integer K we consider the function hK defined as hK(x) = h(x−K). The
function hK is supported on the interval [K+1, K+2], and we see that for any multi-index
α with |α| ≤ N we have

sup
x∈R

(1 + |x|2)N |∂αhK(x)| ≤ sup
x∈R

(1 + (K + 2)2)N |∂αh(x)| ≤ (1 + (K + 2)2)NpN(h).

In particular, pN(hK) ≤ (1 + (K + 2)2)NpN(h)

On the other hand, we have

|〈λ, hK〉| =
∫
R
e|x|hK(x)dx = eK

∫
R
e|x|h(x)dx = eK〈λ, h〉.

If we had 〈λ, g〉 ≤ CpN(g) for any g ∈ C∞c (R), then we would have for any positive integer
K

eK〈λ, h〉 = 〈λ, hK〉 ≤ CpN(hK) ≤ (1 + (K + 2)2)NpN(h),

or equivalently
(1 + (K + 2)2)−NeK ≤ pN(h)/〈λ, h〉.

But pN(h)/〈λ, h〉 is a constant while (1 + (K + 2)2)−NeK grows to infinity as K → ∞.
This means that the inequality 〈λ, g〉 ≤ CpN(g) cannot hold for all g ∈ C∞c (R). As N was
arbitrary, it follows that λ cannot have a continuous extension to S(R).
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