FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 7

Exercise 1. Prove in detail that $\rho\left(f_{n}, g\right) \rightarrow 0$ if and only if $p_{N}\left(f_{n}-g\right) \rightarrow 0$ for every $N \geq 0$.
Solution 1. Direction \Rightarrow. We assume that $\rho\left(f_{n}, f\right) \rightarrow 0$. Suppose to the contrary that there exists N_{0} such that $p_{N_{0}}\left(f_{n}, f\right) \geq \epsilon$ for infinitely many n. Then for such n

$$
\rho\left(f_{n}, f\right)=\sum_{N=0}^{\infty} 2^{-N} \frac{p_{N}\left(f_{n}-f\right)}{1+p_{N}\left(f_{n}-f\right)} \geq 2^{-N_{0}} \frac{p_{N_{0}}\left(f_{n}-f\right)}{1+p_{N_{0}}\left(f_{n}-f\right)} \geq 2^{-N_{0}} \frac{\epsilon}{1+\epsilon}>0
$$

a contradiction.
Direction \Leftarrow. Assume that $p_{N}\left(f_{n}-f\right) \rightarrow 0$ for all N. Let $\epsilon>0$ and N_{0} be a large number to be chosen later. We estimate that

$$
\begin{aligned}
\rho\left(f_{n}, f\right) & =\sum_{N=0}^{\infty} 2^{-N} \frac{p_{N}\left(f_{n}-f\right)}{1+p_{N}\left(f_{n}-f\right)} \\
& =\sum_{N=0}^{N_{0}} 2^{-N} \frac{p_{N}\left(f_{n}-f\right)}{1+p_{N}\left(f_{n}-f\right)}+\sum_{N=N_{0}}^{\infty} 2^{-N} \frac{p_{N}\left(f_{n}-f\right)}{1+p_{N}\left(f_{n}-f\right)} \\
& \leq \sum_{N=0}^{N_{0}} 2^{-N} \frac{p_{N}\left(f_{n}-f\right)}{1+p_{N}\left(f_{n}-f\right)}+\sum_{N=N_{0}}^{\infty} 2^{-N} \\
& \leq \sum_{N=0}^{N_{0}} 2^{-N} \frac{p_{N}\left(f_{n}-f\right)}{1+p_{N}\left(f_{n}-f\right)}+2^{-N_{0}+1} .
\end{aligned}
$$

If we choose N_{0} large enough, the second term will be less than $\epsilon / 2$. The first term can then be estimated since it contains only finitely many terms, and for each term we can use our assumption to choose $n \geq n_{0}$ large enough so that $p_{N}\left(f_{n}-f\right)$ is as small as we wish. Thus we can also bound the first term by $\epsilon / 2$ if we want to, which proves the claim.

Exercise 2. Prove that a linear map $\lambda: \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{C}$ is continuous if and only if there is an index $N \geq 0$ and constant $C<\infty$ such that

$$
|\lambda(g)| \leq C p_{N}(g) \quad \text { for all } \quad g \in \mathcal{S}\left(\mathbb{R}^{d}\right)
$$

Solution 2. By translation invariance of λ and the metric $\rho(f, g)=\rho(f-g, 0)$, the fact that T is continuous is equivalent with the fact that it is continuous at zero. With this in mind, we proceed.
Direction \Leftarrow. Let f_{n} be a sequence converging to zero in the metric ρ. By Exercise 1 we know that $p_{N}\left(f_{n}\right) \rightarrow 0$ as $N \rightarrow \infty$. Since $\left|\lambda\left(f_{n}\right)\right| \leq C p_{N}\left(f_{n}\right)$, we also know that $\lambda\left(f_{n}\right) \rightarrow 0$ so λ is continuous at zero.

Direction \Rightarrow. We make a proof by contradiction. Suppose that for every N and constant C there is a function $f_{N, C}$ such that

$$
\left|\lambda\left(f_{N}\right)\right| \geq C p_{N}\left(f_{N, C}\right)
$$

We choose $C=N$ to get a sequence f_{N} of functions for which

$$
\left|\lambda\left(f_{N}\right)\right| \geq N p_{N}\left(f_{N}\right)
$$

By linearity of T, we can scale this to assume that $p_{N}\left(f_{N}\right)=1 / N$. We prove that then $f_{N} \rightarrow 0$ in the metric ρ. By Exercise 1 it is enough to prove that $p_{M}\left(f_{N}\right) \rightarrow 0$ for every M. But this follows from the fact that if $N \geq M$, then by the fact that the p_{M} are increasing in M we get

$$
p_{M}\left(f_{N}\right) \leq p_{N}\left(f_{N}\right)=1 / N
$$

However,

$$
\left|\lambda\left(f_{N}\right)\right| \geq 1
$$

so λ cannot be continuous at zero.
Exercise 3. Assume that $f \in C^{\infty}\left(\mathbb{R}^{d}\right)$ satisfies for any multi-index α : there exists $M=M_{\alpha}$ and $C=C_{\alpha}$ so that

$$
\left|\partial^{\alpha} f(x)\right| \leq C\left(1+|x|^{2}\right)^{M} \quad \text { for all } x \in \mathbb{R}^{d}
$$

Show that $f g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ for all $g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ and that the map $g \mapsto f g$ is a continuous linear map from $\mathcal{S}\left(\mathbb{R}^{d}\right)$ to $\mathcal{S}\left(\mathbb{R}^{d}\right)$.

Solution 3. The function $f g$ is smooth as a product of smooth functions, and linearity is trivial. We need to estimate the norms $p_{N}(f g)$. To prove that $f g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, we need to show that the norms are finite, and for continuity we need to estimate them by the norms of g. We use the general Leibniz formula from Exercise 8 in the previous set:

$$
\begin{aligned}
p_{N}(f g) & =\sup _{|\alpha| \leq N} \sup _{x \in \mathbb{R}^{d}}\left(1+|x|^{2}\right)^{N}\left|\partial^{\alpha}(f g)(x)\right| \\
& =\sup _{|\alpha| \leq N} \sup _{x \in \mathbb{R}^{d}}\left(1+|x|^{2}\right)^{N}\left|\sum_{\beta \leq \alpha}\binom{\alpha}{\beta} \partial^{\beta} f(x) \partial^{\alpha-\beta} g(x)\right| \\
& \leq \sup _{|\alpha| \leq N} \sum_{\beta \leq \alpha}\binom{\alpha}{\beta} \sup _{x \in \mathbb{R}^{d}}\left(1+|x|^{2}\right)^{N}\left|\partial^{\beta} \phi(x) \partial^{\alpha-\beta} g(x)\right| \\
& \leq \sup _{|\alpha| \leq N} \sum_{\beta \leq \alpha}\binom{\alpha}{\beta} \sup _{x \in \mathbb{R}^{d}} C\left(1+|x|^{2}\right)^{N+M}\left|\partial^{\alpha-\beta} g(x)\right| \\
& \leq \sup _{|\alpha| \leq N} \sum_{\beta \leq \alpha}\binom{\alpha}{\beta} C p_{N+M}(g) \\
& =C 2^{N} p_{N+M}(g) .
\end{aligned}
$$

Here the constants C and M are defined by

$$
C=\max \left\{C_{\alpha}:|\alpha| \leq N\right\} \quad \text { and } \quad M=\max \left\{M_{\alpha}:|\alpha| \leq N\right\} .
$$

Now the map $g \mapsto f g$ is continuous by Theorem 12.2. in the lecture notes.
Exercise 4. Show that the metric space $\left(\mathcal{S}\left(\mathbb{R}^{d}\right), \rho\right)$ (i.e. the Schwartz space of test functions equipped with the metric ρ) is complete.

Solution 4. Suppose that we have a Cauchy sequence $\left(f_{n}\right)$ in the metric ρ. Then $\left(f_{n}\right)$ will also be Cauchy in each of the norms p_{N}, which follows from the fact that

$$
\frac{p_{N}\left(f_{n}-f_{m}\right)}{1+p_{N}\left(f_{n}-f_{m}\right)} \leq 2^{N} \sum_{N=0}^{\infty} 2^{-N} \frac{p_{N}\left(f_{n}-f_{m}\right)}{1+p_{N}\left(f_{n}-f_{m}\right)}=2^{N} \rho\left(f_{n}, f_{m}\right),
$$

so if $\rho\left(f_{n}, f_{m}\right)$ is small then $p_{N}\left(f_{n}-f_{m}\right)$ must be small as well. Choosing $N=0$, we find that $\left(f_{n}\right)$ is Cauchy in the sup-norm and thus has a limit f in the sup-norm. For each multi-index α, the sequence $\left(\partial_{\alpha} f_{n}\right)$ is also Cauchy in the sup-norm and thus converges to some function g_{α}. By basic results about uniformly converging sequences of functions we know that $\partial^{\alpha} f=g_{\alpha}$ (see the course Analysis II). We must still prove that f_{n} converges to f in the metric ρ. Let $\epsilon>0$ be arbitrary. Then there is n_{0} such that $p_{N}\left(f_{m}-f_{n}\right) \leq \epsilon$ when $m, n \geq n_{0}$. Thus

$$
\left(1+|x|^{2}\right)^{N}\left|\partial^{\alpha} f_{n}(x)-f_{m}(x)\right| \leq \epsilon
$$

By uniform convergence, we let $n \rightarrow \infty$ to get that

$$
\left(1+|x|^{2}\right)^{N}\left|\partial^{\alpha} f(x)-f_{m}(x)\right| \leq \epsilon .
$$

This shows that $p_{N}\left(f-f_{m}\right) \rightarrow 0$ as $m \rightarrow \infty$ for every N, enough to show the convergence in the metric ρ by (ii). Obviously also f is in the Schwartz class by $p_{N}(f) \leq p_{N}\left(f-f_{m}\right)+$ $p_{N}\left(f_{m}\right)$ for every N.

Exercise 5. (i) Let $a=\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2}$ and $r>0$. Show that $T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{2}\right)$, where

$$
\langle T, g\rangle:=\int_{0}^{2 \pi} g(a+r(\cos (t), \sin (t)) d t
$$

when $g \in \mathcal{S}\left(\mathbb{R}^{2}\right)$.
(ii) Verify that $T \in \mathcal{S}^{\prime}(\mathbb{R})$, where

$$
\langle T, \phi\rangle:=\sum_{k \in \mathbb{Z}} \phi\left(k^{2}\right) .
$$

Solution 5. (i) It is clear that T is linear. As $|g(x)| \leq p_{0}(g)$, we can estimate

$$
\begin{aligned}
\langle T, g\rangle \mid & =\mid \int_{0}^{2 \pi} g\left(a+r(\cos (t), \sin (t)) d t\left|\leq \int_{0}^{2 \pi}\right| g(a+r(\cos (t), \sin (t)) \mid d t\right. \\
& \leq \int_{0}^{2 \pi} p_{0}(g), d t=2 \pi p_{0}(g)
\end{aligned}
$$

This proves by Exercise 2 that $T \in \mathcal{S}^{\prime}(\mathbb{R})$.
(ii) The linearity is again clear. We know that $|\phi(x)| \leq p_{1}(\phi) /\left(1+|x|^{2}\right)$. We may now estimate

$$
\langle T, \phi\rangle\left|=\left|\sum_{k \in \mathbb{Z}} \phi\left(k^{2}\right)\right| \leq \sum_{k \in \mathbb{Z}}\right| \phi\left(k^{2}\right) \left\lvert\, \leq \sum_{k \in \mathbb{Z}} \frac{p_{1}(\phi)}{1+k^{4}}=C p_{1}(\phi) .\right.
$$

Here $C=\sum_{k \in \mathbb{Z}}\left(1+k^{4}\right)^{-1}$ is the value of the sum. Exercise 2 implies that that $T \in \mathcal{S}^{\prime}(\mathbb{R})$.
Exercise 6. Let $f=\chi_{[0,1]}$ be the characteristic function of an interval. What is the distribution derivative of f ?

Solution 6. The distribution associated with f is T_{f} with

$$
\left\langle T_{f}, \phi\right\rangle:=\int_{\mathbb{R}} f(x) \phi(x) d x
$$

Using the definition of the distribution derivative gives

$$
\left\langle T_{f}^{\prime}, \phi\right\rangle=-\left\langle T_{f}, \phi^{\prime}\right\rangle=-\int_{\mathbb{R}} f(x) \phi^{\prime}(x) d x=-\int_{0}^{1} \phi^{\prime}(x) d x=\phi(0)-\phi(1)
$$

We may write this as $f^{\prime}=\delta_{0}-\delta_{1}$ in the sense of distributions.
Exercise $\mathbf{7}^{*}$. Show that functions that grow too fast do not necessarily define distributions. More specifically, show that $e^{|x|}$ does not define an element in $\mathcal{S}^{\prime}(\mathbb{R})$ in the following sense: the map $\lambda: C_{0}^{\infty}(\mathbb{R}) \rightarrow \mathbb{C}$, where

$$
\langle\lambda, g\rangle:=\int_{\mathbb{R}} e^{|x|} g(x) d x
$$

does not have a continuous extension to the space $\mathcal{S}(\mathbb{R})$.
Solution $\mathbf{7}^{*}$. We will show that the condition given in Exercise 2 is not satisfied. Let $h \in$ $C_{c}^{\infty}(\mathbb{R})$ be a non-trivial positive smooth function supported on the interval $[1,2]$, and let N be arbitrary non-negative integer.

For any positive integer K we consider the function h_{K} defined as $h_{K}(x)=h(x-K)$. The function h_{K} is supported on the interval [$K+1, K+2$], and we see that for any multi-index α with $|\alpha| \leq N$ we have

$$
\sup _{x \in \mathbb{R}}\left(1+|x|^{2}\right)^{N}\left|\partial^{\alpha} h_{K}(x)\right| \leq \sup _{x \in \mathbb{R}}\left(1+(K+2)^{2}\right)^{N}\left|\partial^{\alpha} h(x)\right| \leq\left(1+(K+2)^{2}\right)^{N} p_{N}(h) .
$$

In particular, $p_{N}\left(h_{K}\right) \leq\left(1+(K+2)^{2}\right)^{N} p_{N}(h)$
On the other hand, we have

$$
\left|\left\langle\lambda, h_{K}\right\rangle\right|=\int_{\mathbb{R}} e^{|x|} h_{K}(x) d x=e^{K} \int_{\mathbb{R}} e^{|x|} h(x) d x=e^{K}\langle\lambda, h\rangle .
$$

If we had $\langle\lambda, g\rangle \leq C p_{N}(g)$ for any $g \in C_{c}^{\infty}(\mathbb{R})$, then we would have for any positive integer K

$$
e^{K}\langle\lambda, h\rangle=\left\langle\lambda, h_{K}\right\rangle \leq C p_{N}\left(h_{K}\right) \leq\left(1+(K+2)^{2}\right)^{N} p_{N}(h),
$$

or equivalently

$$
\left(1+(K+2)^{2}\right)^{-N} e^{K} \leq p_{N}(h) /\langle\lambda, h\rangle .
$$

But $p_{N}(h) /\langle\lambda, h\rangle$ is a constant while $\left(1+(K+2)^{2}\right)^{-N} e^{K}$ grows to infinity as $K \rightarrow \infty$. This means that the inequality $\langle\lambda, g\rangle \leq C p_{N}(g)$ cannot hold for all $g \in C_{c}^{\infty}(\mathbb{R})$. As N was arbitrary, it follows that λ cannot have a continuous extension to $\mathcal{S}(\mathbb{R})$.

