FOURIER ANALYSIS. (fall 2016)
MODEL SOLUTIONS FOR SET 7

Exercise 1. Prove in detail that p(f,,g) — 0 if and only if px(f, —g) — 0 for every N > 0.

Solution 1. Direction =. We assume that p(f,, f) — 0. Suppose to the contrary that there
exists Ny such that py, (fn, f) > € for infinitely many n. Then for such n
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a contradiction.

Direction <. Assume that py(f, — f) — 0 for all N. Let ¢ > 0 and Ny be a large number
to be chosen later. We estimate that
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If we choose Ny large enough, the second term will be less than €/2. The first term can
then be estimated since it contains only finitely many terms, and for each term we can use
our assumption to choose n > ng large enough so that px(f, — f) is as small as we wish.
Thus we can also bound the first term by €/2 if we want to, which proves the claim.

Exercise 2. Prove that a linear map A : S(R?) — C is continuous if and only if there is an
index N > 0 and constant C' < oo such that

Ag)| < Cpn(g)  forall geSRY.

Solution 2. By translation invariance of A and the metric p(f, g) = p(f — g,0), the fact that
T is continuous is equivalent with the fact that it is continuous at zero. With this in mind,
we proceed.

Direction <. Let f, be a sequence converging to zero in the metric p. By Exercise 1 we
know that py(f,) — 0 as N — oo. Since |A(f,)| < Cpn(fn), we also know that A(f,) — 0
so A is continuous at zero.



Direction =. We make a proof by contradiction. Suppose that for every N and constant
C there is a function fuy ¢ such that

IA(fn)| = Con(fre).

We choose C' = N to get a sequence fy of functions for which

IA(fn)| = Non(fn)-

By linearity of 7', we can scale this to assume that py(fnx) = 1/N. We prove that then
fn — 01in the metric p. By Exercise 1 it is enough to prove that py(fx) — 0 for every M.
But this follows from the fact that if N > M, then by the fact that the p,, are increasing
in M we get

m(fn) < pn(fn) =1/N.
However,

so A\ cannot be continuous at zero.

Exercise 3. Assume that f € C™(R?) satisfies for any multi-index «: there exists M = M,
and C' = C, so that

10°f(x)| < C(1+ |2z[H)M  for all z € R

Show that fg € S(R?) for all g € S(R?) and that the map g — fg is a continuous linear
map from S(R?) to S(R?).

Solution 3. The function fg is smooth as a product of smooth functions, and linearity is
trivial. We need to estimate the norms py(fg). To prove that fg € S(RY), we need to
show that the norms are finite, and for continuity we need to estimate them by the norms
of g. We use the general Leibniz formula from Exercise 8 in the previous set:

pn(fg) = sup sup (1 +|z[*)N|0%(fg)(2)]
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Here the constants C' and M are defined by
C=max{C,:|a] < N} and M =max{M,:|a] < N}.
Now the map g — fg is continuous by Theorem 12.2. in the lecture notes.

Exercise 4. Show that the metric space (S(R%), p) (i.e. the Schwartz space of test functions
equipped with the metric p) is complete.

Solution 4. Suppose that we have a Cauchy sequence (f,,) in the metric p. Then (f,) will
also be Cauchy in each of the norms py, which follows from the fact that
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so if p(fn, fm) is small then py(f, — fn) must be small as well. Choosing N = 0, we find
that (f,) is Cauchy in the sup-norm and thus has a limit f in the sup-norm. For each
multi-index «, the sequence (0, f,) is also Cauchy in the sup-norm and thus converges to
some function g,. By basic results about uniformly converging sequences of functions we
know that 0%f = g, (see the course Analysis II). We must still prove that f, converges
to f in the metric p. Let € > 0 be arbitrary. Then there is ng such that py(f, — fn) <€
when m,n > ng. Thus

(L + [z N[0 fu(@) = fnl2)] < €
By uniform convergence, we let n — oo to get that

(1+ 20 f(x) = fm(2)] <.

This shows that py(f — f,n) = 0 as m — oo for every N, enough to show the convergence
in the metric p by (ii). Obviously also f is in the Schwartz class by py(f) < pn(f — fin) +
pn(fim) for every N.

Exercise 5. (i) Let a = (a;,ay) € R* and r > 0. Show that 7' € S'(R?), where

(T,q) := /0 Wg(a + r(cos(t),sin(t))dt

when g € S(R?).
(ii) Verify that T' € S'(R), where

= 6(k).
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Solution 5. (i) It is clear that T is linear. As |g(x)| < po(g), we can estimate



(T, 9)| =

/0 ’ g(a—i—r(cos(t),sin(t))dt' < /0 " g0 + r(cos(t), sin(t))| dt
< [ mlo)dt = 2mmio)

This proves by Exercise 2 that T' € §'(R).

(ii) The linearity is again clear. We know that |¢(z)| < pi1(¢)/(1 + |z|*). We may now
estimate

ol = |3 00| < X lotk)l < 3 20— o o).
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Here C' =37, 7(14k*)~" is the value of the sum. Exercise 2 implies that that T € S'(R).

Exercise 6. Let f = x[o,1) be the characteristic function of an interval. What is the distribution
derivative of f7

Solution 6. The distribution associated with f is Ty with

(Ty, ) / f(z

Using the definition of the distribution derivative gives
1
(T0) =176 == [ f@da)do =~ [ ) dz = 6(0) - o(1),
0

We may write this as f/ = dy — d; in the sense of distributions.

Exercise 7*. Show that functions that grow too fast do not necessarily define distributions.
More specifically, show that e/*l does not define an element in S’'(R) in the following sense:
the map A : C§°(R) — C, where

(Mg = /Re'm'g<x>dx

does not have a continuous extension to the space S(R).

Solution 7*. We will show that the condition given in Exercise 2 is not satisfied. Let h €
C2°(R) be a non-trivial positive smooth function supported on the interval [1,2], and let
N be arbitrary non-negative integer.



For any positive integer K we consider the function hx defined as hx(x) = h(z — K). The
function hy is supported on the interval [K 41, K +2], and we see that for any multi-index
a with |a| < N we have

sup(1 + |z*)¥0%h (z)| < sup(1 + (K +2)*)V|0%h(x)] < (1+ (K +2)*)Vpy(h).
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In particular, py(hr) < (1+ (K +2)*)Vpy(h)
On the other hand, we have

O )| = /R e e (2)dr = e /R el h(2)dz = 5 (A, B,

If we had (A, g) < Cpy(g) for any g € C°(R), then we would have for any positive integer
K

e (N h) = (A hi) < Cpn(hi) < (1+ (K +2)*)Vpn(h),

or equivalently

(14 (K +2))NeX < pn(h)/(\ R).

But py(h)/(\, h) is a constant while (1 + (K + 2)?)"VeX grows to infinity as K — oo.
This means that the inequality (), g) < Cpn(g) cannot hold for all g € C°(R). As N was
arbitrary, it follows that A cannot have a continuous extension to S(R).



