FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 6

Exercise 1. Let $\alpha \in \mathbb{N}_{0}^{d}$ be a multi-index. Prove with all details that if $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, then
(i) $\quad x^{\alpha} f(x) \in \mathcal{S}\left(\mathbb{R}^{d}\right) \quad$ and $\quad \partial^{\alpha} f(x) \in \mathcal{S}\left(\mathbb{R}^{d}\right)$,
(ii) $\hat{f} \in C^{\infty}\left(\mathbb{R}^{d}\right)$.
(iii) $\quad\left(\partial^{\alpha} f\right)^{\wedge}(\xi)=(i \xi)^{\alpha} \widehat{f}(\xi) \quad$ (note that one defines $\left.i^{\alpha}:=i^{|\alpha|}\right)$.
(iv) Apply part (iii) by choosing suitable multi-indices α to verify that \widehat{f} decays any polynomial rate, i.e. for any $N \geq 1$ there is a constant C so that $|\widehat{f}(\xi)| \leq C\left(1+|\xi|^{2}\right)^{-N}$.

Solution 1. For ease of notation, let's say that a function f satisfies the ($*$)-condition if

$$
\sup _{x \in \mathbb{R}^{d}}(1+|x|)^{N}|f(x)|<\infty \quad \text { for all } N \geq 0
$$

Thus a function is in $\mathcal{S}\left(\mathbb{R}^{d}\right)$ if it and all of its derivatives satisfy the (*)-condition.
(i) If α is a multi-index, we recall that

$$
x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{d}^{\alpha_{d}} .
$$

By induction it will be enough to show that

$$
x_{j} f \in \mathcal{S}\left(\mathbb{R}^{d}\right)
$$

for every j. Let us calculate the partial derivatives of $x_{j} f$. For $k \neq j$ we have

$$
\partial_{k}\left(x_{j} f\right)=x_{j} \partial_{k} f
$$

and

$$
\partial_{j}\left(x_{j} f\right)=f+x_{j} \partial_{j} f
$$

Using this, we see that if α is a multi-index with $\alpha_{j}=0$, then

$$
\partial^{\alpha} x_{j} f=x_{j} \partial^{\alpha} f
$$

. If $\alpha_{j} \neq 0$, then we let $\alpha^{\prime}=\alpha-e_{j}$ be the multi-index with j th coordinate one less than α and all other coordinates equal. Then we see that

$$
\partial^{\alpha} x_{j} f=x_{j} \partial^{\alpha} f+\alpha_{j} \partial^{\alpha^{\prime}} f
$$

We now prove that if a function g satisfies the $(*)$-condition, then $x_{j} g$ satisfies it as well. After proving this we see that all the partial derivatives of $x_{j} f$ also satisfy $(*)$-condition, so $x_{j} f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$. To see that $x_{j} g$ satisfies $(*)$-condition, we estimate

$$
\sup _{x \in \mathbb{R}^{d}}(1+|x|)^{N}\left|x_{j} g(x)\right| \leq \sup _{x \in \mathbb{R}^{d}}(1+|x|)^{N+1}|g(x)|<\infty .
$$

It is also easy to see that $\partial^{\alpha} f$ is in $\mathcal{S}\left(\mathbb{R}^{d}\right)$, since $\partial^{\beta} \partial^{\alpha} f=\partial^{\beta+\alpha} f$, which satisfies (*)condition for every β.
(ii) We apply Theorem 9.4 and induction to show that $\partial^{\alpha} \widehat{f}(\xi)=\left((-i x)^{\alpha} f(x)\right)(\xi)$. We assume that the formula holds for some multi-index α. Let $e_{j}=(0, \ldots, 0,1,0, \ldots, 0)$, where j th index is 1 . According to part (i) $g(x)=\left(-i x_{j}\right)(-i x)^{\alpha} f(x) \in \mathcal{S}\left(\mathbb{R}^{d}\right) \subset L^{1}\left(\mathbb{R}^{d}\right)$ and therefore

$$
\begin{aligned}
\partial^{\alpha+e_{j}} \widehat{f}(\xi) & =\frac{\partial}{\partial \xi_{j}}\left(\partial^{\alpha} \widehat{f}(\xi)\right)=\frac{\partial}{\partial \xi_{j}}\left((-i x)^{\alpha} f(x)\right)(\xi) \\
& =\left(-i x_{j}(-i x)^{\alpha} f(x)\right)(\xi)=\left((-i x)^{\alpha+e_{j}} f(x)\right)(\xi)
\end{aligned}
$$

The formula therefore holds for $\alpha+e_{j}$, and by induction, for any multi-index. In particular, $\widehat{f} \in C^{\infty}\left(\mathbb{R}^{d}\right)$.
(iii) By induction it is enough to prove that

$$
\left(\partial_{j} f\right)^{\wedge}(\xi)=\left(i \xi_{j}\right) \widehat{f}(\xi)
$$

for all j. To do this we use integration by parts to obtain that

$$
\int_{\mathbb{R}^{d}}\left(\partial_{j} f\right)(x) e^{-i \xi \cdot x} d x=-\int_{\mathbb{R}^{d}} f(x) \partial_{j} e^{-i \xi \cdot x} d x=i \xi_{j} \int_{\mathbb{R}^{d}} f(x) e^{-i \xi \cdot x} d x
$$

which is what we wanted.
(iv) Let $N \geq 1$ be fixed. For any fixed multi-index α we know by part (i) that $\partial^{\alpha} f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$. Since the Fourier transform maps any $L^{1}\left(\mathbb{R}^{d}\right)$ function into $L^{\infty}\left(\mathbb{R}^{d}\right)$, we know by part (iii) that $(i \xi)^{\alpha} \widehat{f}(\xi)$ is in $L^{\infty}\left(\mathbb{R}^{d}\right)$ for every α. Hence we get the bounds

$$
\left|\xi^{\alpha}\right||\widehat{f}(\xi)| \leq C_{\alpha}
$$

As $\left(1+|\xi|^{2}\right)^{N}$ is a polynomial, we can express it as a finite sum of terms of form ξ^{α}. Hence there exists a constant C_{N} such that

$$
\left(1+|\xi|^{2}\right)^{N}|\widehat{f}(\xi)| \leq C_{N}
$$

Dividing by $\left(1+|\xi|^{2}\right)^{N}$ gives $|\widehat{f}(\xi)| \leq C\left(1+|\xi|^{2}\right)^{-N}$ as wanted.
Exercise 2. Apply the previous exercise and verify carefully that

$$
\text { if } \quad f \in \mathcal{S}\left(\mathbb{R}^{d}\right), \quad \text { then } \quad \widehat{f} \in \mathcal{S}\left(\mathbb{R}^{d}\right) \text {. }
$$

Solution 2. We proved in the previous exercise that $\widehat{f} \in C^{\infty}\left(\mathbb{R}^{d}\right)$. It remains to show that all the derivatives satisfy the $(*)$-condition.
The previous exercise already implies that for any Schwartz function g the function \widehat{g} already satisfies the $(*)$-condition. We also showed that for any multi-index α

$$
\left.\partial^{\alpha} \widehat{f}(\xi)=\left((-i x)^{\alpha} f(x)\right) \upharpoonleft \xi\right)
$$

and $(-i x)^{\alpha} f(x)$ is a Schwartz function. We see that any derivative of \widehat{f} is Fourier transform of a Schwartz function and therefore satisfies the $(*)$-condition.

Exercise 3. Which of the following functions belong to $\mathcal{S}\left(\mathbb{R}^{d}\right)$?
(i) $f(x)=\left(1+|x|^{2}\right)^{-1}$.
(ii) $f(x)=e^{-|x|^{2}}$.
(iii) $f(x)=e^{-|x|^{2}} \cos \left(e^{|x|^{2}}\right)$.

Solution 3. (i) This function does not belong in $\mathcal{S}\left(\mathbb{R}^{d}\right)$. We see that

$$
\sup _{x \in \mathbb{R}^{d}}\left(1+|x|^{2}\right)^{2}|f(x)|=\sup _{x \in \mathbb{R}^{d}} 1+|x|^{2}=\infty .
$$

(ii) This function belongs in $\mathcal{S}\left(\mathbb{R}^{d}\right)$.

The function is smooth as it is a composition of smooth functions. Note that $f(x)$ itself satisfies $(*)$-condition, since the exponential function grows faster than any polynomial. Now

$$
\partial_{j} f(x)=-2 x_{j} e^{-|x|^{2}}
$$

By induction we see that $\partial^{\alpha} f(x)$ is some polynomial times $f(x)$ for every multi-index α. But these types of functions also satisfy $(*)$-condition, since we proved that if f satisfies $(*)$-condition then $x_{j} f$ also satisfies $(*)$-condition and we can use induction to prove this for any polynomial in place of x_{j}. Thus all the partial derivatives satisfy $(*)$-condition and $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.
(iii) This function does not belong in $\mathcal{S}\left(\mathbb{R}^{d}\right)$. Considering its partial derivative shows that

$$
\begin{aligned}
\sup _{x \in \mathbb{R}^{d}}\left(1+|x|^{2}\right)\left|\partial_{1} f(x)\right| & \geq \sup _{x \in \mathbb{R}^{d}}\left|-2 x_{1} e^{-|x|^{2}} \cos \left(\left.e^{\mid} x\right|^{2}\right)-e^{-|x|^{2}} \sin \left(\left.e^{\mid} x\right|^{2}\right) e^{|x|^{2}} 2 x_{1}\right| \\
& =\sup _{x \in \mathbb{R}^{d}}\left|-2 x_{1} e^{-|x|^{2}} \cos \left(\left.e^{\mid} x\right|^{2}\right)-2 x_{1} \sin \left(\left.e^{\mid} x\right|^{2}\right)\right|=\infty,
\end{aligned}
$$

because the term $2 x_{1} \sin \left(\left.e^{\mid} x\right|^{2}\right)$ is not bounded.
Exercise 4. Compute the integral $\int_{-\infty}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x$ by first computing the Fourier transform of the characteristic function $\chi_{[-1,1]}$.

Solution 4. Recall from Exercise 1 in the previous set that

$$
\widehat{\chi}_{[-1,1]}=\frac{2 \sin (\xi)}{\xi} .
$$

We also know that for any $f \in L^{2}(\mathbb{R})$

$$
2 \pi \int_{\mathbb{R}}|f(x)|^{2} d x=\int_{\mathbb{R}}|\widehat{f}(\xi)|^{2} d \xi
$$

Now we use these facts to see that

$$
4 \pi=2 \pi \int_{-1}^{1} 1^{2} d x=\int_{-\infty}^{\infty}\left(\frac{2 \sin \xi}{\xi}\right)^{2} d \xi
$$

and we can solve that

$$
\int_{-\infty}^{\infty}\left(\frac{\sin \xi}{\xi}\right)^{2} d \xi=\pi
$$

Exercise 5. Assume that $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$. (i) Compute the Fourier transform of the Laplacian $\Delta f:=\left(\sum_{j=1}^{d}\left(\frac{\partial}{\partial x_{j}}\right)^{2}\right) f$ in terms of \widehat{f}.
(ii) Show that $\frac{f(x)}{1+|x|^{2}} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.

Solution 5. (i) Using (iii) from Exercise 1, we find that

$$
\widehat{\widehat{\Delta f}}(\xi)=\sum_{j=1}^{d} \widehat{\partial_{x_{j}}^{2} f}(\xi)=\sum_{j=1}^{d}\left(i \xi_{j}\right)^{2} \widehat{f}(\xi)=-|\xi|^{2} \widehat{f}(\xi)
$$

(ii) Let us say that a function $R(x)$ is a good rational function if

$$
R(x)=\frac{P(x)}{Q(x)}
$$

where $P(x)$ and $Q(x)$ are polynomials and $Q(x)$ does not take the value zero. Especially $\left(1+|x|^{2}\right)^{-1}$ is a good rational function. The claim of the exercise now follows from these two results:
Claim 1. If $R(x)$ is a good rational function and f satisfies $(*)$-condition from Exercise 1 , then $R(x) f(x)$ satisfies ($*$)-condition.
Proof. If $R(x)$ is a good rational function, then $|R(x)| \leq C(1+|x|)^{M}$ for some constants $C, M \geq 0$. Thus

$$
\sup _{x \in \mathbb{R}^{d}}(1+|x|)^{N}|R(x) f(x)| \leq \sup _{x \in \mathbb{R}^{d}} C(1+|x|)^{N+M}|f(x)|<\infty
$$

for all N. This proves the claim.
Claim 2. If a function is of the form $R(x) f(x)$ with R a good rational function and $f \in \mathcal{S}$, then all of its first-order derivatives are also sums of functions of the same form.
Proof. We simply compute that

$$
\partial_{x_{j}} R(x) f(x)=\frac{\left(\partial_{x_{j}} P(x)\right) Q(x)-P(x) \partial_{x_{j}} Q(x)}{Q(x)^{2}} f(x)+R(x) \partial_{x_{j}} f(x)
$$

which is of the desired form.
The claim now follows by induction. By Claim 1, the function $\left(1+|x|^{2}\right)^{-1} f(x)$ satisfies $(*)$-condition. By Claim 2 and 1, so do its first order derivatives. Continuing this argument we find that all the derivatives satisfy $(*)$-condition, so $\left(1+|x|^{2}\right)^{-1} f(x) \in \mathcal{S}$.

Exercise 6. Use Fourier transform to find a solution formula for the partial differential equation

$$
\Delta f-f=g
$$

for given $g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ and show that also the solution f lies in $\mathcal{S}\left(\mathbb{R}^{d}\right)$.
Solution 6. If $f \in \mathcal{S}$ satisfies the equation

$$
\Delta f-f=g, \quad \Delta=\left(\frac{\partial}{\partial x_{1}}\right)^{2}+\cdots+\left(\frac{\partial}{\partial x_{d}}\right)^{2}
$$

we can take the Fourier transform of both sides to find that

$$
-\left(|\xi|^{2}+1\right) \widehat{f}(\xi)=\widehat{g}(\xi)
$$

Recall from Exercise 2 that we also know that $\widehat{f}(\xi), \widehat{g}(\xi) \in \mathcal{S}$. We can now solve the Fourier transform of f :

$$
\widehat{f}(\xi)=-\left(1+|\xi|^{2}\right)^{-1} \widehat{g}(\xi)
$$

By previous exercise, we know that $-\left(1+|\xi|^{2}\right) \widehat{g}(\xi) \in \mathcal{S}$. Thus it is possible to take the inverse Fourier transform \mathcal{F}^{-1} to find the solution f :

$$
f(x)=\mathcal{F}^{-1}\left[-\left(1+|\xi|^{2}\right)^{-1} \widehat{g}(\xi)\right](x)
$$

This solves the original equation so we are done.
Exercise 7. (i) Specialize in the previous exercise to dimension $d=1$ and show that the solution is given by the convolution

$$
f(x)=-\frac{1}{2} \int_{-\infty}^{\infty} e^{-|x-y|} g(y) d y .
$$

(ii) Given $\varepsilon>0$, show that one may pick $g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ so that the solution f satisfies $\|f\|_{L^{2}(\mathbb{R})}<\varepsilon\|g\|_{L^{2}(\mathbb{R})}$.

Solution 7. (i) We define function h as $h(x)=e^{-|x|}$. We saw in Exercise 3 of the previous set that $\widehat{h}(\xi)=\frac{2}{1+\xi^{2}}$. Therefore

$$
\widehat{f}(\xi)=-\frac{1}{2} \widehat{g}(\xi) \widehat{h}(\xi)
$$

As the Fourier transform of the convolution is the product of the Fourier transforms, we have

$$
f(x)=-\frac{1}{2}(g * h)(x)=-\frac{1}{2} \int_{-\infty}^{\infty} g(y) e^{-|x-y|} d y
$$

(ii) Let M be a constant. Let h be a C_{c}^{∞} function with $h(x)=0$ for $|x| \leq M$ that is not identically 0 . As compactly supported smooth functions are Schwartz functions, we know that there exists a Schwartz function g with $\widehat{g}=h$.
Now we can estimate

$$
\begin{aligned}
\|f\|_{L^{2}} & =(2 \pi)^{-1 / 2}\|\widehat{f}\|_{L^{2}}=(2 \pi)^{-1 / 2}\left(\int\left(1+|\xi|^{2}\right)^{-2}|\widehat{g}(\xi)|^{2} d \xi\right)^{1 / 2} \\
& \leq(2 \pi)^{-1 / 2}\left(\int\left(1+M^{2}\right)^{-2}|\widehat{g}(\xi)|^{2} d \xi\right)^{1 / 2}=\left(1+M^{2}\right)^{-1}(2 \pi)^{-1 / 2}\|\widehat{g}\|_{L^{2}} \\
& =\left(1+M^{2}\right)^{-1}\|g\|_{L^{2}}
\end{aligned}
$$

As $\|g\| \neq 0$ and M was arbitrary, the claim follows.
Exercise 8*. Prove Leibniz general rule for differentiation of products: if $\alpha \in \mathbb{N}_{0}^{d}$ is an arbitrary multi-index and $f, g \in C^{\infty}\left(\mathbb{R}^{d}\right)$, then

$$
\partial^{\alpha}(f g)(x)=\sum_{\beta \leq \alpha}\binom{\alpha}{\beta} \partial^{\beta} f(x) \partial^{\alpha-\beta} g(x)
$$

where $\binom{\alpha}{\beta}:=\prod_{j=1}^{d}\binom{\alpha_{j}}{\beta_{j}}$
Solution $\mathbf{8}^{*}$. We prove the claim by induction. The case $\alpha=0$ is trivial. Assume that the claim holds for any $|\alpha| \leq n, n \geq 0$. Then if $|\alpha|=n+1$, we may write $\alpha=\beta+e_{i}$ for some $i \in\{1, \ldots, d\}$ and $\beta \in \mathbb{N}_{0}^{d}(|\beta|=n)$. Here e_{i} is a multi-index with $\left(e_{i}\right)_{j}=1$ if $j=i$ and
$\left(e_{i}\right)_{j}=0$ otherwise. Now using induction hypothesis we get

$$
\begin{aligned}
& \partial^{\alpha}(f g)(x)=\partial^{e_{i}} \partial^{\beta}(f g)(x)=\partial^{e_{i}} \sum_{\gamma \leq \beta}\binom{\beta}{\gamma} \partial^{\gamma} f(x) \partial^{\beta-\gamma} g(x) \\
& =\sum_{\gamma \leq \beta}\binom{\beta}{\gamma} \partial^{e_{i}} \partial^{\gamma} f(x) \partial^{\beta-\gamma} g(x)+\sum_{\gamma \leq \beta}\binom{\beta}{\gamma} \partial^{\gamma} f(x) \partial^{e_{i}} \partial^{\beta-\gamma} g(x) \\
& =\sum_{\gamma \leq \beta}\binom{\beta}{\gamma} \partial^{\gamma+e_{i}} f(x) \partial^{\beta+e_{i}-\left(\gamma+e_{i}\right)} g(x)+\sum_{\gamma \leq \beta}\binom{\beta}{\gamma} \partial^{\gamma} f(x) \partial^{\beta+e_{i}-\gamma} g(x) \\
& =\sum_{\gamma \leq \beta+e_{i}, \gamma_{i} \geq 1}\binom{\beta}{\gamma-e_{i}} \partial^{\gamma} f(x) \partial^{\alpha-\gamma} g(x)+\sum_{\gamma \leq \beta, \gamma, i \geq 1}\binom{\beta}{\gamma} \partial^{\gamma} f(x) \partial^{\alpha-\gamma} g(x) \\
& +\sum_{\gamma \leq \beta, \gamma_{i}=0}\binom{\beta}{\gamma} \partial^{\gamma} f(x) \partial^{\alpha-\gamma} g(x) \\
& =\sum_{\gamma \leq \beta, \gamma_{i} \geq 1}\binom{\beta}{\gamma-e_{i}} \partial^{\gamma} f(x) \partial^{\alpha-\gamma} g(x)+\left(\partial^{\alpha} f(x)\right) g(x) \\
& +\sum_{\gamma \leq \beta, \gamma i \geq 1}\binom{\beta}{\gamma} \partial^{\gamma} f(x) \partial^{\alpha-\gamma} g(x)+\sum_{\gamma \leq \beta, \gamma=0}\binom{\beta}{\gamma} \partial^{\gamma} f(x) \partial^{\alpha-\gamma} g(x) \\
& =\sum_{\gamma \leq \beta, \gamma_{i} \geq 1}\left(\binom{\beta}{\gamma-e_{i}}+\binom{\beta}{\gamma}\right) \partial^{\gamma} f(x) \partial^{\alpha-\gamma} g(x)+\left(\partial^{\alpha} f(x)\right) g(x)+ \\
& \sum_{\gamma \leq \beta, \gamma_{i}=0}\binom{\beta}{\gamma} \partial^{\gamma} f(x) \partial^{\alpha-\gamma} g(x) \\
& =\sum_{\gamma \leq \beta, \gamma_{i} \geq 1}\left(\binom{\beta_{i}}{\gamma_{i}-1}+\binom{\beta_{i}}{\gamma_{i}}\right) \prod_{j \neq i}\binom{\beta_{j}}{\gamma_{j}} \partial^{\gamma} f(x) \partial^{\alpha-\gamma} g(x) \\
& +\left(\partial^{\alpha} f(x)\right) g(x)+\sum_{\gamma \leq \beta, \gamma_{i}=0}\binom{\beta}{\gamma} \partial^{\gamma} f(x) \partial^{\alpha-\gamma} g(x) \\
& =\sum_{\gamma \leq \beta, \gamma_{i} \geq 1}\binom{\alpha_{i}}{\gamma_{i}} \prod_{j \neq i}\binom{\alpha_{j}}{\gamma_{j}} \partial^{\gamma} f(x) \partial^{\alpha-\gamma} g(x) \\
& +\left(\partial^{\alpha} f(x)\right) g(x)+\sum_{\gamma \leq \beta, \gamma_{i}=0}\binom{\alpha}{\gamma} \partial^{\gamma} f(x) \partial^{\alpha-\gamma} g(x) \\
& =\sum_{\gamma \leq \beta}\binom{\alpha}{\gamma} \partial^{\gamma} f(x) \partial^{\alpha-\gamma} g(x)+\left(\partial^{\alpha} f(x)\right) g(x) \\
& =\sum_{\gamma \leq \alpha}\binom{\alpha}{\gamma} \partial^{\gamma} f(x) \partial^{\alpha-\gamma} g(x) \text {. }
\end{aligned}
$$

