FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 6

Exercise 1. Let o € N? be a multi-index. Prove with all details that if f € S(R?), then
(i) z°f(z) € S(RY) and 0°f(z) € S(RY),
(i) fe CeRY.

-~

(i) (0“f)"(&) = (&> (&) (note that one defines i := ill).

(iv) Apply part (iii) by choosing suitable multi-indices a to verify that f decays any

-~

polynomial rate, i.e. for any N > 1 there is a constant C' so that |f(£)] < C(1 + [£]?) V.
Solution 1. For ease of notation, let’s say that a function f satisfies the (x)-condition if

sup (1 + |z|)™|f(z)] < oo forall N > 0.
zeRY

Thus a function is in S(R?) if it and all of its derivatives satisfy the (x)-condition.
(i) If o is a multi-index, we recall that
o = aftag? -yt
By induction it will be enough to show that
z;f € S(RY)
for every j. Let us calculate the partial derivatives of x;f. For k # j we have

Ok(z;f) = 2;0Lf

and

Oj(x;f) = f +;0;f.
Using this, we see that if « is a multi-index with «; = 0, then
0%, f = x;0°f

. If a; # 0, then we let o/ = o — e; be the multi-index with jth coordinate one less than
« and all other coordinates equal. Then we see that

0%z, f = 2;0°f + ;0" f.

We now prove that if a function g satisfies the (x)-condition, then z;g satisfies it as well.
After proving this we see that all the partial derivatives of z, f also satisfy (*)-condition,
so z;f € S(R). To see that x;g satisfies (¥)-condition, we estimate
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sup (1 + |z[)"V|z;9(z)| < sup (1 + |z[)*g(z)| < occ.
z€R4 rER4

It is also easy to see that 9°f is in S(RY), since 9°9°f = 9°+f, which satisfies (x)-
condition for every f.

~

(ii) We apply Theorem 9.4 and induction to show that 0%f(§) = ((—iz)*f(z))(§). We
assume that the formula holds for some multi-index a. Let e; = (0,...,0,1,0,...,0),
where jth index is 1. According to part (i) g(x) = (—iz;)(—iz)*f(z) € S(R?) c L'(R?)
and therefore
O TIE) = (€)= (i) () TCE)
9g; 9€;
= (—iz;(—iz)* f(2)(€) = ((—iz)*" f(2)](E).

The formula therefore holds for a+-¢;, and by induction, for any multi-index. In particular,
f e C=(RY.

(iii) By induction it is enough to prove that

o~

@) (&) = (i&;) F(£)

for all j. To do this we use integration by parts to obtain that

/ O f)(@)e ™ %de = — [ f(x)05e™"*da = 7153‘/ f(z)e " *dx,
R4 R e

which is what we wanted.

(iv) Let N > 1 be fixed. For any fixed multi-index o we know by part (i) that 9°f € S(R?).
Since the Fourier transform maps any L'(R?) function into L>°(R?), we know by part (iii)
that (i £)® f(€) is in L®(R?) for every a. Hence we get the bounds

~

E71F(E)] < Ca

As (1+1€]?)" is a polynomial, we can express it as a finite sum of terms of form £*. Hence
there exists a constant Cy such that

1+ EPNIF©)] < Cw.

Dividing by (1 + |£[2)Y gives |f(€)] < C(1 + |£[2)~" as wanted.
Exercise 2. Apply the previous exercise and verify carefully that

if feSRY, then feSRY.



Solution 2. We proved in the previous exercise that fe c> (]Rd). It remains to show that all
the derivatives satisfy the (x)-condition.

The previous exercise already implies that for any Schwartz function ¢ the function g
already satisfies the (x)-condition. We also showed that for any multi-index «

~

0°f(&) = ((—iz)* f())TE)

and (—iz)*f(z) is a Schwartz function. We see that any derivative of f is Fourier transform
of a Schwartz function and therefore satisfies the (x)-condition.

Exercise 3. Which of the following functions belong to S (Rd) ?
G) f@)=01+]=z»)t (i) fla)=e P
(iii) f(x) = e~ ll? COS(GIIIQ)‘

Solution 3. (i) This function does not belong in S(R%). We see that

sup (1+ |2[%)?|f(x)] = sup 1+ |]* = co.
xeRd xeRd

(ii) This function belongs in S(R?).
The function is smooth as it is a composition of smooth functions. Note that f(z) itself
satisfies (*)-condition, since the exponential function grows faster than any polynomial.
Now
2
d;f(x) = =267 17",

By induction we see that 0% f(z) is some polynomial times f(z) for every multi-index a.
But these types of functions also satisfy (x)-condition, since we proved that if f satisfies
(*)-condition then z; f also satisfies (x)-condition and we can use induction to prove this
for any polynomial in place of ;. Thus all the partial derivatives satisfy (*)-condition and
f € S(RY).

(iii) This function does not belong in S(R?). Considering its partial derivative shows that

supd(l + 2?01 f ()| > sup. ‘—Qxle’mz cos(elz|?) — e *F sin(e'x!2)6|x‘22x1’
xER xER

= 00,

—2z1e7 1 cos(elz|?) — 2, sin(elz]?)

= sup
zeR*

because the term 2z, sin(elz|?) is not bounded.

) > fsinz’
Exercise 4. Compute the integral / ( ) dz by first computing the Fourier transform
x

—0o0

of the characteristic function x[_1 1.



Solution 4. Recall from Exercise 1 in the previous set that

R = 2812(5).

We also know that for any f € L*(R)

2n [ If@Edo= [ TR e

Now we use these facts to see that

00 . 2
47r:27r/1 12d:p:/ <2S?€> d§
-1 —00
> /sin€)? B
[ (F) e

Exercise 5. Assume that f € S(R?). (i) Compute the Fourier transform of the Laplacian
Af = (Z;l:l (%)2)]‘ in terms of f.

and we can solve that

(i) Show that 11; (T;IQ e S(RY).

Solution 5. (i) Using (iii) from Exercise 1, we find that
d d

AF(e) =" F(6) = Y _(i€)f(€) = €[ F(€).

j=1 7j=1

(ii) Let us say that a function R(z) is a good rational function if

P(z)
Q(z)’

R(z) =

where P(z) and @(x) are polynomials and @(x) does not take the value zero. Especially
(1+ |x[*)~! is a good rational function. The claim of the exercise now follows from these
two results:

Claim 1. If R(z) is a good rational function and f satisfies (*)-condition from Exercise
1, then R(x)f(z) satisfies (*)-condition.

Proof. If R(x) is a good rational function, then |R(z)| < C(1 + |z|)™ for some constants
C,M > 0. Thus

sup (1 + |2)¥|R(z) f(z)] < sup C(1 + [« f(2)] < oo
zER? z€R?



for all N. This proves the claim.

Claim 2. If a function is of the form R(z)f(x) with R a good rational function and f € S,
then all of its first-order derivatives are also sums of functions of the same form.

Proof. We simply compute that

0y. P(x x) — P(2)0,.Q(x
0, Rl (o) = VD PIRRE) )+ Rajo ),

which is of the desired form.

The claim now follows by induction. By Claim 1, the function (1 + |z|*)~!f(z) satisfies
(*)-condition. By Claim 2 and 1, so do its first order derivatives. Continuing this argument
we find that all the derivatives satisfy (*)-condition, so (1 + |z|*)~!f(z) € S.

Exercise 6. Use Fourier transform to find a solution formula for the partial differential equa-
tion
Af=f=g
for given g € S(R?) and show that also the solution f lies in S(R?).

Solution 6. If f € S satisfies the equation

9 \? 0 \?
s=s=o o= (5) e (5)

we can take the Fourier transform of both sides to find that

—(l€]? + 1) F(€) = §(&)-

~

Recall from Exercise 2 that we also know that f(£),g(¢) € S. We can now solve the
Fourier transform of f:

F&) = -1+ 1P g(e).

By previous exercise, we know that —(1 + |£]?)g(§) € S. Thus it is possible to take the
inverse Fourier transform F~! to find the solution f:

fla) =F 1 [=(1+[*)99)] (x).
This solves the original equation so we are done.

Exercise 7. (i) Specialize in the previous exercise to dimension d = 1 and show that the
solution is given by the convolution

f(a) = —2 /_oo e 1" ¥g(y)dy.

2/

(ii) Given £ > 0, show that one may pick ¢ € S(R?) so that the solution f satisfies
||f||L2(R) < EHQHLQ(R)



Solution 7. (i) We define function h as h(z) = e71#l. We saw in Exercise 3 of the previous
set that h(¢) = —25. Therefore

14+€2°
~ 1 o~
Fl&) =~ 53(0h(0).
As the Fourier transform of the convolution is the product of the Fourier transforms, we
have ) |
fla) = =5lgh)e) = =5 [ glw)e = dy.

(ii) Let M be a constant. Let h be a C2° function with h(z) = 0 for |x| < M that is not
identically 0. As compactly supported smooth functions are Schwartz functions, we know
that there exists a Schwartz function g with g = h.

Now we can estimate

R 1/2
112 = ()21l = 22 ([ 10+ 16 ate P )

1/2
< (2m)7? (/ (1+ MQ)_QIE(Q\Qdf) = (1+ M%)~ (2m) gl 2

(1+ M%) gl

As |lg]| # 0 and M was arbitrary, the claim follows.

Exercise 8*. Prove Leibniz general rule for differentiation of products: if @ € N¢ is an
arbitrary multi-index and f, g € C*(R?), then

F (o)) = 3 (O‘)aﬁf@s) (),

BLa ﬁ
d .
where (g) = ]1;[1 (Zj)

Solution 8*. We prove the claim by induction. The case a = 0 is trivial. Assume that the
claim holds for any |a| < mn, n > 0. Then if |a| = n+ 1, we may write a = f + ¢; for some
i€{l,...,d} and B € N¢ (|8] = n). Here ¢; is a multi-index with (e;); = 1 if j = i and



(€;); = 0 otherwise. Now using induction hypothesis we get
O (f0)(e) =00 fa)(a) = 0 3 (7)o 000 gt
v<B
=3 (Do oo+ X (7)o s ot
v<B i v<B i
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