
FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 6

Exercise 1. Let α ∈ Nd
0 be a multi-index. Prove with all details that if f ∈ S(Rd), then

(i) xαf(x) ∈ S(Rd) and ∂αf(x) ∈ S(Rd),

(ii) f̂ ∈ C∞(Rd).

(iii) (∂αf)̂(ξ) = (i ξ)α f̂(ξ) (note that one defines iα := i|α|).

(iv) Apply part (iii) by choosing suitable multi-indices α to verify that f̂ decays any

polynomial rate, i.e. for any N ≥ 1 there is a constant C so that |f̂(ξ)| ≤ C(1 + |ξ|2)−N .

Solution 1. For ease of notation, let’s say that a function f satisfies the (∗)-condition if

sup
x∈Rd

(1 + |x|)N |f(x)| <∞ for all N ≥ 0.

Thus a function is in S(Rd) if it and all of its derivatives satisfy the (∗)-condition.

(i) If α is a multi-index, we recall that

xα = xα1
1 x

α2
2 · · ·x

αd
d .

By induction it will be enough to show that

xjf ∈ S(Rd)

for every j. Let us calculate the partial derivatives of xjf . For k 6= j we have

∂k(xjf) = xj∂kf

and
∂j(xjf) = f + xj∂jf.

Using this, we see that if α is a multi-index with αj = 0, then

∂αxjf = xj∂
αf

. If αj 6= 0, then we let α′ = α − ej be the multi-index with jth coordinate one less than
α and all other coordinates equal. Then we see that

∂αxjf = xj∂
αf + αj∂

α′
f.

We now prove that if a function g satisfies the (∗)-condition, then xjg satisfies it as well.
After proving this we see that all the partial derivatives of xjf also satisfy (∗)-condition,
so xjf ∈ S(Rd). To see that xjg satisfies (∗)-condition, we estimate
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sup
x∈Rd

(1 + |x|)N |xjg(x)| ≤ sup
x∈Rd

(1 + |x|)N+1|g(x)| <∞.

It is also easy to see that ∂αf is in S(Rd), since ∂β∂αf = ∂β+αf , which satisfies (∗)-
condition for every β.

(ii) We apply Theorem 9.4 and induction to show that ∂αf̂(ξ) = ((−ix)αf(x))̂ (ξ). We
assume that the formula holds for some multi-index α. Let ej = (0, . . . , 0, 1, 0, . . . , 0),
where jth index is 1. According to part (i) g(x) = (−ixj)(−ix)αf(x) ∈ S(Rd) ⊂ L1(Rd)
and therefore

∂α+ej f̂(ξ) =
∂

∂ξj
(∂αf̂(ξ)) =

∂

∂ξj
((−ix)αf(x))̂(ξ)

= (−ixj(−ix)αf(x))̂(ξ) = ((−ix)α+ejf(x))̂(ξ).

The formula therefore holds for α+ej, and by induction, for any multi-index. In particular,

f̂ ∈ C∞(Rd).

(iii) By induction it is enough to prove that

(∂jf )̂ (ξ) = (iξj)f̂(ξ)

for all j. To do this we use integration by parts to obtain that∫
Rd

(∂jf)(x)e−iξ·xdx = −
∫
Rd

f(x)∂je
−iξ·xdx = iξj

∫
Rd

f(x)e−iξ·xdx,

which is what we wanted.

(iv) LetN ≥ 1 be fixed. For any fixed multi-index α we know by part (i) that ∂αf ∈ S(Rd).
Since the Fourier transform maps any L1(Rd) function into L∞(Rd), we know by part (iii)

that (i ξ)α f̂(ξ) is in L∞(Rd) for every α. Hence we get the bounds

|ξα||f̂(ξ)| ≤ Cα.

As (1+ |ξ|2)N is a polynomial, we can express it as a finite sum of terms of form ξα. Hence
there exists a constant CN such that

(1 + |ξ|2)N |f̂(ξ)| ≤ CN .

Dividing by (1 + |ξ|2)N gives |f̂(ξ)| ≤ C(1 + |ξ|2)−N as wanted.

Exercise 2. Apply the previous exercise and verify carefully that

if f ∈ S(Rd), then f̂ ∈ S(Rd).
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Solution 2. We proved in the previous exercise that f̂ ∈ C∞(Rd). It remains to show that all
the derivatives satisfy the (∗)-condition.

The previous exercise already implies that for any Schwartz function g the function ĝ
already satisfies the (∗)-condition. We also showed that for any multi-index α

∂αf̂(ξ) = ((−ix)αf(x))̂ (ξ)

and (−ix)αf(x) is a Schwartz function. We see that any derivative of f̂ is Fourier transform
of a Schwartz function and therefore satisfies the (∗)-condition.

Exercise 3. Which of the following functions belong to S(Rd) ?

(i) f(x) = (1 + |x|2)−1. (ii) f(x) = e−|x|
2
.

(iii) f(x) = e−|x|
2

cos(e|x|
2
).

Solution 3. (i) This function does not belong in S(Rd). We see that

sup
x∈Rd

(1 + |x|2)2|f(x)| = sup
x∈Rd

1 + |x|2 =∞.

(ii) This function belongs in S(Rd).

The function is smooth as it is a composition of smooth functions. Note that f(x) itself
satisfies (∗)-condition, since the exponential function grows faster than any polynomial.
Now

∂jf(x) = −2xje
−|x|2 .

By induction we see that ∂αf(x) is some polynomial times f(x) for every multi-index α.
But these types of functions also satisfy (∗)-condition, since we proved that if f satisfies
(∗)-condition then xjf also satisfies (∗)-condition and we can use induction to prove this
for any polynomial in place of xj. Thus all the partial derivatives satisfy (∗)-condition and
f ∈ S(Rd).

(iii) This function does not belong in S(Rd). Considering its partial derivative shows that

sup
x∈Rd

(1 + |x|2)|∂1f(x)| ≥ sup
x∈Rd

∣∣∣−2x1e
−|x|2 cos(e|x|2)− e−|x|2 sin(e|x|2)e|x|22x1

∣∣∣
= sup

x∈Rd

∣∣∣−2x1e
−|x|2 cos(e|x|2)− 2x1 sin(e|x|2)

∣∣∣ =∞,

because the term 2x1 sin(e|x|2) is not bounded.

Exercise 4. Compute the integral

∫ ∞
−∞

(
sinx

x

)2

dx by first computing the Fourier transform

of the characteristic function χ[−1,1].
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Solution 4. Recall from Exercise 1 in the previous set that

χ̂[−1,1] =
2 sin(ξ)

ξ
.

We also know that for any f ∈ L2(R)

2π

∫
R
|f(x)|2 dx =

∫
R
|f̂(ξ)|2 dξ.

Now we use these facts to see that

4π = 2π

∫ 1

−1
12dx =

∫ ∞
−∞

(
2 sin ξ

ξ

)2

dξ

and we can solve that ∫ ∞
−∞

(
sin ξ

ξ

)2

dξ = π.

Exercise 5. Assume that f ∈ S(Rd). (i) Compute the Fourier transform of the Laplacian

∆f :=
(∑d

j=1

(
∂
∂xj

)2)
f in terms of f̂ .

(ii) Show that
f(x)

1 + |x|2
∈ S(Rd).

Solution 5. (i) Using (iii) from Exercise 1, we find that

∆̂f(ξ) =
d∑
j=1

∂̂2xjf(ξ) =
d∑
j=1

(iξj)
2f̂(ξ) = −|ξ|2f̂(ξ).

(ii) Let us say that a function R(x) is a good rational function if

R(x) =
P (x)

Q(x)
,

where P (x) and Q(x) are polynomials and Q(x) does not take the value zero. Especially
(1 + |x|2)−1 is a good rational function. The claim of the exercise now follows from these
two results:

Claim 1. If R(x) is a good rational function and f satisfies (∗)-condition from Exercise
1, then R(x)f(x) satisfies (∗)-condition.

Proof. If R(x) is a good rational function, then |R(x)| ≤ C(1 + |x|)M for some constants
C,M ≥ 0. Thus

sup
x∈Rd

(1 + |x|)N |R(x)f(x)| ≤ sup
x∈Rd

C(1 + |x|)N+M |f(x)| <∞
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for all N . This proves the claim.

Claim 2. If a function is of the form R(x)f(x) with R a good rational function and f ∈ S,
then all of its first-order derivatives are also sums of functions of the same form.

Proof. We simply compute that

∂xjR(x)f(x) =
(∂xjP (x))Q(x)− P (x)∂xjQ(x)

Q(x)2
f(x) +R(x)∂xjf(x),

which is of the desired form.

The claim now follows by induction. By Claim 1, the function (1 + |x|2)−1f(x) satisfies
(∗)-condition. By Claim 2 and 1, so do its first order derivatives. Continuing this argument
we find that all the derivatives satisfy (∗)-condition, so (1 + |x|2)−1f(x) ∈ S.

Exercise 6. Use Fourier transform to find a solution formula for the partial differential equa-
tion

∆f − f = g

for given g ∈ S(Rd) and show that also the solution f lies in S(Rd).

Solution 6. If f ∈ S satisfies the equation

∆f − f = g, ∆ =

(
∂

∂x1

)2

+ · · ·+
(

∂

∂xd

)2

,

we can take the Fourier transform of both sides to find that

−(|ξ|2 + 1)f̂(ξ) = ĝ(ξ).

Recall from Exercise 2 that we also know that f̂(ξ), ĝ(ξ) ∈ S. We can now solve the
Fourier transform of f :

f̂(ξ) = −(1 + |ξ|2)−1ĝ(ξ).

By previous exercise, we know that −(1 + |ξ|2)ĝ(ξ) ∈ S. Thus it is possible to take the
inverse Fourier transform F−1 to find the solution f :

f(x) = F−1
[
−(1 + |ξ|2)−1ĝ(ξ)

]
(x).

This solves the original equation so we are done.

Exercise 7. (i) Specialize in the previous exercise to dimension d = 1 and show that the
solution is given by the convolution

f(x) = −1

2

∫ ∞
−∞

e−|x−y|g(y)dy.

(ii) Given ε > 0, show that one may pick g ∈ S(Rd) so that the solution f satisfies
‖f‖

L2(R)
< ε‖g‖

L2(R)
.
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Solution 7. (i) We define function h as h(x) = e−|x|. We saw in Exercise 3 of the previous

set that ĥ(ξ) = 2
1+ξ2

. Therefore

f̂(ξ) = −1

2
ĝ(ξ)ĥ(ξ).

As the Fourier transform of the convolution is the product of the Fourier transforms, we
have

f(x) = −1

2
(g ∗ h)(x) = −1

2

∫ ∞
−∞

g(y)e−|x−y| dy.

(ii) Let M be a constant. Let h be a C∞c function with h(x) = 0 for |x| ≤ M that is not
identically 0. As compactly supported smooth functions are Schwartz functions, we know
that there exists a Schwartz function g with ĝ = h.

Now we can estimate

‖f‖L2 = (2π)−1/2‖f̂‖L2 = (2π)−1/2
(∫

(1 + |ξ|2)−2|ĝ(ξ)|2dξ
)1/2

≤ (2π)−1/2
(∫

(1 +M2)−2|ĝ(ξ)|2dξ
)1/2

= (1 +M2)−1(2π)−1/2‖ĝ‖L2

= (1 +M2)−1‖g‖L2

As ‖g‖ 6= 0 and M was arbitrary, the claim follows.

Exercise 8∗. Prove Leibniz general rule for differentiation of products: if α ∈ Nd
0 is an

arbitrary multi-index and f, g ∈ C∞(Rd), then

∂α(fg)(x) =
∑
β≤α

(
α

β

)
∂βf(x) ∂α−βg(x),

where

(
α

β

)
:=

d∏
j=1

(
αj
βj

)
Solution 8∗. We prove the claim by induction. The case α = 0 is trivial. Assume that the

claim holds for any |α| ≤ n, n ≥ 0. Then if |α| = n+ 1, we may write α = β + ei for some
i ∈ {1, . . . , d} and β ∈ Nd

0 (|β| = n). Here ei is a multi-index with (ei)j = 1 if j = i and
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(ei)j = 0 otherwise. Now using induction hypothesis we get

∂α(fg)(x) = ∂ei∂β(fg)(x) = ∂ei
∑
γ≤β

(
β

γ

)
∂γf(x)∂β−γg(x)

=
∑
γ≤β

(
β

γ

)
∂ei∂γf(x)∂β−γg(x) +

∑
γ≤β

(
β

γ

)
∂γf(x)∂ei∂β−γg(x)

=
∑
γ≤β

(
β

γ

)
∂γ+eif(x)∂β+ei−(γ+ei)g(x) +

∑
γ≤β

(
β

γ

)
∂γf(x)∂β+ei−γg(x)

=
∑

γ≤β+ei,γi≥1

(
β

γ − ei

)
∂γf(x)∂α−γg(x) +

∑
γ≤β,γi≥1

(
β

γ

)
∂γf(x)∂α−γg(x)

+
∑

γ≤β,γi=0

(
β

γ

)
∂γf(x)∂α−γg(x)

=
∑

γ≤β,γi≥1

(
β

γ − ei

)
∂γf(x)∂α−γg(x) + (∂αf(x))g(x)

+
∑

γ≤β,γi≥1

(
β

γ

)
∂γf(x)∂α−γg(x) +

∑
γ≤β,γi=0

(
β

γ

)
∂γf(x)∂α−γg(x)

=
∑

γ≤β,γi≥1

((
β

γ − ei

)
+

(
β

γ

))
∂γf(x)∂α−γg(x) + (∂αf(x))g(x)+

∑
γ≤β,γi=0

(
β

γ

)
∂γf(x)∂α−γg(x)

=
∑

γ≤β,γi≥1

((
βi

γi − 1

)
+

(
βi
γi

))∏
j 6=i

(
βj
γj

)
∂γf(x)∂α−γg(x)

+ (∂αf(x))g(x) +
∑

γ≤β,γi=0

(
β

γ

)
∂γf(x)∂α−γg(x)

=
∑

γ≤β,γi≥1

(
αi
γi

)∏
j 6=i

(
αj
γj

)
∂γf(x)∂α−γg(x)

+ (∂αf(x))g(x) +
∑

γ≤β,γi=0

(
α

γ

)
∂γf(x)∂α−γg(x)

=
∑
γ≤β

(
α

γ

)
∂γf(x)∂α−γg(x) + (∂αf(x))g(x)

=
∑
γ≤α

(
α

γ

)
∂γf(x)∂α−γg(x).
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