FOURIER ANALYSIS. (Fall 2016)

6. EXERCISES (Fri 11.11, 10-12 in room C322)

- **1.** Let $\alpha \in \mathbf{N}_0^d$ be a multi-index. Prove with all details that if $f \in \mathcal{S}(\mathbf{R}^d)$, then
 - (i) $x^{\alpha}f(x) \in \mathcal{S}(\mathbf{R}^d)$ and $\partial^{\alpha}f(x) \in \mathcal{S}(\mathbf{R}^d)$,
 - (ii) $\widehat{f} \in C^{\infty}(\mathbf{R}^d).$
 - (iii) $(\partial^{\alpha} f)^{\widehat{}}(\xi) = (i\xi)^{\alpha} \widehat{f}(\xi)$ (note that one defines $i^{\alpha} := i^{|\alpha|}$).

(iv) Apply part (iii) by choosing suitable multi-indices α to verify that \hat{f} decays any polynomial rate, i.e. for any $N \ge 1$ there is a constant C so that $|\hat{f}(\xi)| \le C(1+|\xi|^2)^{-N}$.

2. Apply the previous exercise and verify carefully that

if
$$f \in \mathcal{S}(\mathbf{R}^d)$$
, then $\widehat{f} \in \mathcal{S}(\mathbf{R}^d)$.

- **3.** Which of the following functions belong to $\mathcal{S}(\mathbf{R}^d)$?
 - (i) $f(x) = (1 + |x|^2)^{-1}$. (ii) $f(x) = e^{-|x|^2}$. (iii) $f(x) = e^{-|x|^2} \cos(e^{|x|^2})$.
- 4. Compute the integral $\int_{-\infty}^{\infty} \left(\frac{\sin x}{x}\right)^2 dx$ by first computing the Fourier transform of the characteristic function $\chi_{[-1,1]}$.
- 5. Assume that $f \in \mathcal{S}(\mathbf{R}^d)$. (i) Compute the Fourier transform of the Laplacian $\Delta f := \left(\sum_{j=1}^d \left(\frac{\partial}{\partial x_j}\right)^2\right) f$ in terms of \widehat{f} .

(ii) Show that
$$\frac{f(x)}{1+|x|^2} \in \mathcal{S}(\mathbf{R}^d).$$

6. Use Fourier transform to find a solution formula for the partial differential equation

$$\Delta f - f = g$$

for given $g \in \mathcal{S}(\mathbf{R}^d)$ and show that also the solution f lies in $\mathcal{S}(\mathbf{R}^d)$.

7. (i) Specialize in the previous exercise to dimension d = 1 and show that the solution is given by the convolution

$$f(x) = -\frac{1}{2} \int_{-\infty}^{\infty} e^{-|x-y|} g(y) dy$$

(ii) Given $\varepsilon > 0$, show that one may pick $g \in \mathcal{S}(\mathbf{R}^d)$ so that the solution f satisfies $\|f\|_{L^2(\mathbf{R})} < \varepsilon \|g\|_{L^2(\mathbf{R})}$.

8^{*1} Prove Leibniz general rule for differentiation of products: if $\alpha \in \mathbf{N}_0^d$ is an arbitrary multi-index and $f, g \in C^{\infty}(\mathbf{R}^d)$, then

$$\partial^{\alpha}(fg)(x) = \sum_{\beta \leq \alpha} {\alpha \choose \beta} \partial^{\beta} f(x) \partial^{\alpha-\beta} g(x),$$

where $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$:= $\prod_{j=1}^d \begin{pmatrix} \alpha_j \\ \beta_j \end{pmatrix}$

¹These *-exercises are extras for afficinadoes, not required to get full points from exercises

Hints for some of the exercises:

T.1: [(i) Suggestion: show that $x_j\phi(x) \in \mathcal{S}(\mathbf{R}^d)$ if $\phi \in \mathcal{S}(\mathbf{R}^d)$ and apply induction. Or alternatively, use Leibniz rule for the derivative of a product.]

- **T.4:** [Hint: Recall the L^2 -theory for the Fourier transform!]
- **T.6:** [Hint:use exercise 5.]
- **T.7:** [Hint: in part (i) recall Exercise 3/set 5.]