FOURIER ANALYSIS. (Fall 2016)

6. EXERCISES (Fri 11.11, 10-12 in room C322)

1. Let $\alpha \in \mathbf{N}_{0}^{d}$ be a multi-index. Prove with all details that if $f \in \mathcal{S}\left(\mathbf{R}^{d}\right)$, then
(i) $x^{\alpha} f(x) \in \mathcal{S}\left(\mathbf{R}^{d}\right) \quad$ and $\quad \partial^{\alpha} f(x) \in \mathcal{S}\left(\mathbf{R}^{d}\right)$,
(ii) $\widehat{f} \in C^{\infty}\left(\mathbf{R}^{d}\right)$.
(iii) $\quad\left(\partial^{\alpha} f\right)^{\wedge}(\xi)=(i \xi)^{\alpha} \widehat{f}(\xi) \quad$ (note that one defines $\left.i^{\alpha}:=i^{|\alpha|}\right)$.
(iv) Apply part (iii) by choosing suitable multi-indices α to verify that \widehat{f} decays any polynomial rate, i.e. for any $N \geq 1$ there is a constant C so that $|\widehat{f}(\xi)| \leq C\left(1+|\xi|^{2}\right)^{-N}$.
2. Apply the previous exercise and verify carefully that

$$
\text { if } \quad f \in \mathcal{S}\left(\mathbf{R}^{d}\right), \quad \text { then } \quad \widehat{f} \in \mathcal{S}\left(\mathbf{R}^{d}\right)
$$

3. Which of the following functions belong to $\mathcal{S}\left(\mathbf{R}^{d}\right)$?
(i) $\quad f(x)=\left(1+|x|^{2}\right)^{-1}$.
(ii) $f(x)=e^{-|x|^{2}}$.
(iii) $f(x)=e^{-|x|^{2}} \cos \left(e^{|x|^{2}}\right)$.
4. Compute the integral $\int_{-\infty}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x$ by first computing the Fourier transform of the characteristic function $\chi_{[-1,1]}$.
5. Assume that $f \in \mathcal{S}\left(\mathbf{R}^{d}\right)$. (i) Compute the Fourier transform of the Laplacian $\Delta f:=\left(\sum_{j=1}^{d}\left(\frac{\partial}{\partial x_{j}}\right)^{2}\right) f$ in terms of \widehat{f}.
(ii) Show that $\frac{f(x)}{1+|x|^{2}} \in \mathcal{S}\left(\mathbf{R}^{d}\right)$.
6. Use Fourier transform to find a solution formula for the partial differential equation

$$
\Delta f-f=g
$$

for given $g \in \mathcal{S}\left(\mathbf{R}^{d}\right)$ and show that also the solution f lies in $\mathcal{S}\left(\mathbf{R}^{d}\right)$.
7. (i) Specialize in the previous exercise to dimension $d=1$ and show that the solution is given by the convolution

$$
f(x)=-\frac{1}{2} \int_{-\infty}^{\infty} e^{-|x-y|} g(y) d y
$$

(ii) Given $\varepsilon>0$, show that one may pick $g \in \mathcal{S}\left(\mathbf{R}^{d}\right)$ so that the solution f satisfies $\|f\|_{L^{2}(\mathbf{R})}<\varepsilon\|g\|_{L^{2}(\mathbf{R})}$.
$8^{* 1}$ Prove Leibniz general rule for differentiation of products: if $\alpha \in \mathbf{N}_{0}^{d}$ is an arbitrary multi-index and $f, g \in C^{\infty}\left(\mathbf{R}^{d}\right)$, then

$$
\partial^{\alpha}(f g)(x)=\sum_{\beta \leq \alpha}\binom{\alpha}{\beta} \partial^{\beta} f(x) \partial^{\alpha-\beta} g(x),
$$

where $\binom{\alpha}{\beta}:=\prod_{j=1}^{d}\binom{\alpha_{j}}{\beta_{j}}$

[^0]Hints for some of the exercises:
T.1: [(i) Suggestion: show that $x_{j} \phi(x) \in \mathcal{S}\left(\mathbf{R}^{d}\right)$ if $\phi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$ and apply induction. Or alternatively, use Leibniz rule for the derivative of a product.]
T.4: [Hint: Recall the L^{2}-theory for the Fourier transform!]
T.6: [Hint:use exercise 5.]
T.7: [Hint: in part (i) recall Exercise 3/set 5.]

[^0]: ${ }^{1}$ These $*$-exercises are extras for afficinadoes, not required to get full points from exercises

