FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 5

Exercise 1. Compute the Fourier transform of the characteristic function $\chi_{[-a,a]}$ (here a>0).

Solution 1. By definition,

$$\widehat{\chi}_{[-a,a]}(\xi) = \int_{-a}^{a} e^{-i\xi x} dx = \frac{e^{-i\xi a} - e^{i\xi a}}{-i\xi} = \frac{2\sin(a\xi)}{\xi}.$$

Exercise 2. (i) Compute the convolution $\chi_{[-a,a]} * \chi_{[-a,a]}$.

(ii) Compute the Fourier transform (in one dimension) of the function $g(x) = \max(0, 1 - |x|)$.

Solution 2. (i) A straightforward computation shows that

$$\chi_{[-a,a]} * \chi_{[-a,a]}(x) = \int_{-a}^{a} \chi_{[-a,a]}(x-y) \, dy = \max(0, 2a - |x|).$$

(ii) By (i) we see that $g(x) = \chi_{[-1/2,1/2]} * \chi_{[-1/2,1/2]}(x)$. Using Exercise 1, we get

$$\widehat{g}(\xi) = (\widehat{\chi}_{[-1/2,1/2]}(\xi))^2 = \frac{4\sin^2(\xi/2)}{\xi^2}$$

Exercise 3. Compute the Fourier transform $f: \mathbb{R} \to \mathbb{R}$, where $f(x) := e^{-k|x|}$ (here k > 0): show that

$$\widehat{f}(\xi) = \frac{2k}{k^2 + \xi^2}$$

Solution 3. This is a pretty straightforward computation

$$\begin{split} \widehat{f}(\xi) &= \int_{-\infty}^{\infty} e^{-i\xi x} e^{-k|x|} dx \\ &= \int_{0}^{\infty} e^{-(i\xi+k)x} dx + \int_{-\infty}^{0} e^{-(i\xi-k)x} dx \\ &= \left[\frac{1}{-(i\xi+k)} e^{-(i\xi+k)x} \right]_{0}^{\infty} + \left[\frac{1}{-(i\xi-k)} e^{-(i\xi-k)x} \right]_{-\infty}^{0} \\ &= \frac{1}{i\xi+k} - \frac{1}{i\xi-k} \\ &= \frac{2k}{k^2 + \xi^2}. \end{split}$$

Here we have used the facts that

$$\lim_{x \to \infty} e^{-(i\xi + k)x} = 0 \quad \text{and} \quad \lim_{x \to -\infty} e^{-(i\xi - k)x} = 0,$$

following from $|e^{-(i\xi+k)x}| = e^{-kx}$ and $|e^{-(i\xi-k)x}| = e^{kx}$.

Exercise 4. (i) If $f \in L^1(\mathbb{R}^d)$ and $g(x) = \overline{f(-x)}$, show that $\widehat{g}(\xi) \equiv \overline{\widehat{f}(\xi)}$.

(ii) If $f \in L^1(\mathbb{R}^d)$ and $g(x) = \frac{1}{t^d} f(\frac{x}{t}), t > 0$, show that $\widehat{g}(\xi) \equiv \widehat{f}(t\xi)$.

Solution 4. (i) We compute simply that

$$\widehat{g}(\xi) = \int_{\mathbb{R}^d} e^{-i\xi \cdot x} \overline{f(-x)} dx$$

$$= \int_{\mathbb{R}^d} e^{i\xi \cdot x} \overline{f(x)} dx$$

$$= \int_{\mathbb{R}^d} \overline{e^{-i\xi \cdot x} f(x)} dx$$

$$= \int_{\mathbb{R}^d} e^{-i\xi \cdot x} f(x) dx$$

$$= \overline{\widehat{f}(\xi)}.$$

(ii) Using the change of variables $y = x/t = (x_1/t, x_2/t, \dots, x_n/t)$ whose Jacobian determinant is equal to $1/t^d$, we find that

$$\widehat{g}(\xi) = \int_{\mathbb{R}^d} e^{-i\xi \cdot x} f\left(\frac{x}{t}\right) \frac{1}{t^d} dx$$

$$= \int_{\mathbb{R}^d} e^{-i\xi \cdot ty} f(y) dy$$

$$= \int_{\mathbb{R}^d} e^{-it\xi \cdot y} f(y) dy$$

$$= \widehat{f}(t\xi).$$

Exercise 5. Suppose that the function $f: \mathbb{R}^d \to \mathbb{C}$ has the form

$$f(x) = f_1(x_1) f_2(x_2) \cdots f_d(x_d), \quad \forall \ x = (x_1, \dots, x_d) \in \mathbb{R}^d,$$

where $f_1, \ldots, f_d \in L^1(\mathbb{R}^1)$. Show that then $f \in L^1(\mathbb{R}^d)$ and we have

$$\widehat{f}(\xi) = \widehat{f}_1(\xi_1)\widehat{f}_2(\xi_2)\cdots\widehat{f}_d(\xi_d) \qquad \forall \ \xi = (\xi_1,\ldots,\xi_d) \in \mathbb{R}^d.$$

Solution 5. Applying Fubini's theorem for non-negative functions, we see that $\int_{\mathbb{R}^d} |f(x)| dx = \int_{-\infty}^{\infty} |f_1(x_1)| dx_1 \int_{-\infty}^{\infty} |f_2(x_2)| dx_2 \cdots \int_{-\infty}^{\infty} |f_d(x_d)| dx_d < \infty$. As $f \in L^1(\mathbb{R}^d)$, we can now apply Fubini's theorem and compute the Fourier transform. If d > 1, we can define a function $g : \mathbb{R}^{d-1} \to \mathbb{C}$ by setting $g(x) = f_1(x_1)f_2(x_2) \cdots f_{d-1}(x_{d-1})$ and denote $\widetilde{\xi} = \int_{-\infty}^{\infty} |f_1(x_1)|^2 dx_2 \cdots f_{d-1}(x_{d-1})$

 (ξ_1,\ldots,ξ_{d-1}) . We may then compute

$$\widehat{f}(\xi) = \int_{\mathbb{R}^d} f(x)e^{-i\xi \cdot x} dx$$

$$= \int_{-\infty}^{\infty} \int_{\mathbb{R}^{d-1}} g(y)f_d(x_d)e^{-i(\widetilde{\xi}y + \xi_d x_d)} dy dx_d$$

$$= \int_{-\infty}^{\infty} f_d(x_d)e^{-i\xi_d x_d} \int_{\mathbb{R}^{d-1}} g(y)e^{-i\widetilde{\xi} \cdot y} dy dx_d$$

$$= \int_{-\infty}^{\infty} f_d(x_d)e^{-i\xi_d x_d} \widehat{g}(\widetilde{\xi}) dx_d$$

$$= \widehat{f}_d(\xi_d)\widehat{g}(\widetilde{\xi}).$$

Now g is a function defined on \mathbb{R}^{d-1} so we can use induction to deduce

$$\widehat{f}(\xi) = \widehat{f}_1(\xi_1)\widehat{f}_2(\xi_2)\cdots\widehat{f}_d(\xi_d)$$

Exercise 6. Assume that $H \in L^1(\mathbb{R}^d)$ fulfils $H \geq 0$, and $\int_{\mathbb{R}^d} H(x) dx = 1$, together with

$$|H(x)| \le \frac{C}{(1+|x|)^{d+1}}.$$

For $\varepsilon > 0$ let us denote $H_{\varepsilon}(x) := \varepsilon^{-d}H(x/\varepsilon)$. If $f \in L^1(\mathbb{R}^d)$ is continuous at 0, prove that

$$\lim_{\varepsilon \to 0} \int_{\mathbb{R}^d} f(x) H_{\varepsilon}(x) dx = f(0).$$

Solution 6. Let $\eta > 0$ be arbitrary. By continuity of f we can find $\delta > 0$ such that $|f(x) - f(0)| < \eta$ when $|x| < \delta$.

Now as $\int_{\mathbb{R}^d} H_{\varepsilon}(x) dx = \int_{\mathbb{R}^d} H(x) dx = 1$, we have

$$\left| \int_{\mathbb{R}^d} f(x) H_{\varepsilon}(x) \, dx - f(0) \right| = \left| \int_{\mathbb{R}^d} (f(x) - f(0)) H_{\varepsilon}(x) \, dx \right|.$$

Split the integral in three parts:

$$\int_{B(0,\delta)} (f(x) - f(0)) H_{\varepsilon}(x) dx + \int_{\mathbb{R}^d \setminus B(0,\delta)} f(x) H_{\varepsilon}(x) dx - \int_{\mathbb{R}^d \setminus B(0,\delta)} f(0) H_{\varepsilon}(x) dx.$$

Then in the first integral $|x| < \delta$, so $|f(x) - f(0)| < \eta$. Now we have

$$\left| \int_{B(0,\delta)} (f(x) - f(0)) H_{\varepsilon}(x) \, dx \right| \le \int_{B(0,\delta)} \eta H_{\varepsilon}(x) \, dx \le \eta.$$

We can estimate the second integral as

$$\left| \int_{\mathbb{R}^{d} \setminus B(0,\delta)} f(x) H_{\varepsilon}(x) \, dx \right| = \left| \int_{\mathbb{R}^{d} \setminus B(0,\delta)} f(x) \frac{H(x/\varepsilon)}{\varepsilon^{d}} \, dx \right|$$

$$\leq \int_{\mathbb{R}^{d} \setminus B(0,\delta)} |f(x)| \frac{C}{\varepsilon^{d} (1 + |x/\varepsilon|)^{d+1}} \, dx$$

$$\leq \int_{\mathbb{R}^{d} \setminus B(0,\delta)} |f(x)| \frac{C}{(1 + \delta/\varepsilon)^{d+1}} \frac{1}{\varepsilon^{d}} \, dx$$

$$\leq \int_{\mathbb{R}^{d} \setminus B(0,\delta)} |f(x)| C \frac{\varepsilon}{(\varepsilon + \delta)^{d+1}} \, dx$$

$$\leq ||f||_{L^{1}} C \frac{\varepsilon}{\delta^{d+1}} \to 0.$$

For the third integral, we can apply dominated convergence theorem to compute

$$\left| \int_{\mathbb{R}^d \setminus B(0,\delta)} f(0) H_{\varepsilon}(x) \, dx \right| = \left| \int_{\mathbb{R}^d \setminus B(0,\delta)} f(0) \frac{H(x/\varepsilon)}{\varepsilon^d} \, dx \right|$$

$$= \left| \int_{\mathbb{R}^d \setminus B(0,\delta/\varepsilon)} f(0) H(x) \, dx \right|$$

$$\leq \int_{\mathbb{R}^d \setminus B(0,\delta/\varepsilon)} |f(0)| H(x) \, dx \to 0.$$

We have shown that

$$\limsup_{\varepsilon \to 0} \left| \int_{\mathbb{R}^d} f(x) H_{\varepsilon}(x) \, dx - f(0) \right| \le \eta.$$

As $\eta > 0$ was arbitrary, we have shown that

$$\lim_{\varepsilon \to 0} \int_{\mathbb{R}^d} f(x) H_{\varepsilon}(x) \, dx = f(0).$$

Exercise 7. Let a > 0. Check that the function $H(x) := c_a e^{-a|x|^2}$ with a suitable constant c_a satisfies the conditions of the previous exercise. What is the value of c_a ?

Solution 7. As the real exponential function is always positive, we have that $H(x) \geq 0$ if $c_a \geq 0$.

For the property $\int_{\mathbb{R}^d} H(x) dx = 1$, we compute the integral of $e^{-a|x|^2}$ and then choose c_a appropriately. The integral is slightly modified Gaussian integral, so we use Fubini's theorem:

$$\int_{\mathbb{R}^d} e^{-a|x|^2} dx = \left(\int_{-\infty}^{\infty} e^{-ax^2} dx \right)^d = \sqrt{\frac{\pi}{a}}^d.$$

This means that the integral of H is correct if we choose $c_a = (\frac{a}{\pi})^{d/2}$.

It remains to prove for all $x \in \mathbb{R}^d$ the estimate

$$|H(x)| \le \frac{C}{(1+|x|)^{d+1}}.$$

For this, observe that it is sufficient to prove for any non-negative real x that

$$c_a e^{-ax^2} \le \frac{C}{(1+x)^{d+1}}.$$

Consider the function $g:[0,\infty)\to\mathbb{R}$, $g(x)=(1+x)^{d+1}e^{-ax^2}$. Using l'Hospital's rule, we see that $\lim_{x\to\infty}g(x)=0$. This means that there is a constant M such that $g(x)\leq 1$ for x>M. As g is continuos, it has a finite maximum in the interval [0,M], and therefore g is a bounded function.

We have shown that H satisfies the conditions of the previous exercise with constant $c_a = \left(\frac{a}{\pi}\right)^{d/2}$.

Exercise 8*. Prove the formula $\sum_{n=0}^{\infty} \frac{\cos(nx)}{n!} = e^{\cos x} \cos(\sin(x)).$

Solution 8*. Using the Taylor expansion of the exponential function we have

$$\exp(e^{ix}) = \sum_{n=0}^{\infty} \frac{e^{inx}}{n!} = \sum_{n=0}^{\infty} \frac{\cos(nx)}{n!} + i \sum_{n=0}^{\infty} \frac{\sin(nx)}{n!}.$$

Similarly

$$\exp(e^{-ix}) = \sum_{n=0}^{\infty} \frac{e^{-inx}}{n!} = \sum_{n=0}^{\infty} \frac{\cos(nx)}{n!} - i \sum_{n=0}^{\infty} \frac{\sin(nx)}{n!}.$$

So

$$\frac{\exp(e^{ix}) + \exp(e^{-ix})}{2} = \sum_{n=0}^{\infty} \frac{\cos(nx)}{n!}.$$

And

$$\frac{\exp(e^{ix}) + \exp(e^{-ix})}{2} = \frac{e^{\cos x}e^{i\sin x} + e^{\cos x}e^{-i\sin x}}{2} = e^{\cos x}\cos(\sin(x)).$$