FOURIER ANALYSIS. (fall 2016)
MODEL SOLUTIONS FOR SET 5

Exercise 1. Compute the Fourier transform of the characteristic function x[_,q (here a > 0).

Solution 1. By definition,

.. e~ — ¢ 2gin(af)
X[-a.a)(§) = / e " dr = —— = .
X(-a.al(§) 9 . :

Exercise 2. (i) Compute the convolution X[=a,a] * X[-a,a]-

(ii) Compute the Fourier transform (in one dimension) of the function
g(x) = max(0,1 — [z).

Solution 2. (i) A straightforward computation shows that

a

X[-a,a * X[-a,a)(T) = / X[-a,a (T — y) dy = max(0,2a — |x]).

—a

ii) By (i) we see that g(x) = x|—1/2.1/21 * X[—1/2.1/21(). Using Exercise 1, we get
[=1/2,1/2] * X[-1/2,1/2]

~ ~ 4sin?(£/2
5O = Rrjaal©) = =22
Exercise 3. Compute the Fourier transform f : R — R, where f(z) := e 1l (here k > 0) :
show that ok
f(&) = e

Solution 3. This is a pretty straightforward computation

fio)= [~ et

oo

00 0
_ / 6_(i§+k)zdl’ + / 6—(i§—k)zdx
0 —00

00 0
_ {(;eu&k)x} 4 {(;e(ifk)x

i€ + k) 0 i§ — k) o
1 1
TuE+k iE—k
2%
“Ere

Here we have used the facts that

lim e 2 =0 and lim e @ R* =,
T—00 T——00

following from |e~(#+k)7| = e=h and |e=(-R)7| = ek,
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Exercise 4. (i) If f € L'(R%) and g(z) = f(—z), show that §(&) = f(£).
(ii) If fe L' (R?) and g(z) = Lf(%),t>0, show that g(&) = f(t&).

Solution 4. (i) We compute simply that

56 = [ e T
:/ e f(2)da
:/ e~ f(x)dr

Rd

:/ e~ f(x)dx
Rd

~

(€)-

(ii) Using the change of variables y = x/t = (x1/t, x2/t, ..., x,/t) whose Jacobian deter-
minant is equal to 1/t¢, we find that

0~ <o 5) b
- / eiEN [ (y)dy
g
- / e f(y)dy
R

~

= [(t8).
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Exercise 5. Suppose that the function f : R? — C has the form

f(x) = fi(z1) fa(za) - - - fa(wa), Vo= (2,...,2q4) € Rd7
where fi,..., fs € L'(R"). Show that then f € L'(R?) and we have

J/C\(g) :ﬁ(fl)ﬁ(f2)"'ﬁ(§d) VE= (&, &) e R%.

Solution 5. Applying Fubini’s theorem for non-negative functions, we see that fRd |f(x)| de =

2@ day [ | folaa)| das -+ [7 | fa(wa)| dzg < co. As f € LY(R?), we can now
apply Fubini’s theorem and compute the Fourier transform. If d > 1, we can define a

function ¢ : R — C by setting g(x) = fi(x1)fo(zs) - fa_1(x4_1) and denote & =



(&1,...,&4—1). We may then compute
fi6) = [ pa)e o
B / /Rd_1 9(y) falwa)e™ e dy da,
= /_Oo fa(wq)e e /Rd_l g(y)e Y dy dz,
— [ twae e 15(@) o
= fa(€2)3(&).
Now g is a function defined on RY™! so we can use induction to deduce
&) = hiefal&) - fala)

Exercise 6. Assume that H € L'(R?%) fulfils H > 0, and Jpe H(z)dx = 1, together with

C

|H(z)| < A% 2t

For £ > 0 let us denote H.(x) := e ?H(z/e). If f € L*(R?) is continuous at 0, prove that

lim /Rdf(a:)Hs(x)dx — £(0).

e—0

Solution 6. Let n > 0 be arbitrary. By continuity of f we can find § > 0 such that |f(z) —
f(0)| < n when |z| < 0.

Now as [pa He(2) dv = [pa H(z)dz = 1, we have

J@H () de = f(0)] = | [ (f(z) = f(0))Hc(x)dz| .
R R

Split the integral in three parts:

/3(0,5)(f(x) — f(0))He(x) dx +/

ey, T @@ o = / FO)Ha(z) do.

R\ B(0,6)

Then in the first integral |z| < 6, so |f(x) — f(0)| < n. Now we have

/ (f(2) — F(0)Ho(x) du
B(0,5)

< / nH.(z)dx <.
B(0,5)



We can estimate the second integral as

’/ flz)H () dx| =
R\B(Oé

‘ [ i,
R4\ B(0,5) €

C

flx dx

< Jeroon PO 7
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For the third integral, we can apply dominated convergence theorem to compute

@ﬁ)'
x)d d
‘/Rd\B(O,é) fOH ! ‘/R \B(0,6) .

_ ‘ /R g [ OH@)E

<[ FO)H(z)dz — 0.
R\ B(0,6/¢)

We have shown that

lim sup
e—0

/ flz dw—f(O)‘Sn-

As 1 > 0 was arbitrary, we have shown that

lim f(z)H:(z)dx = f(0).

e—0 Rd
Exercise 7. Let a > 0. Check that the function H(z) := cae_amg with a suitable constant ¢,
satisfies the conditions of the previous exercise. What is the value of ¢,?

Solution 7. As the real exponential function is always positive, we have that H(z) > 0 if
cq > 0.

For the property fRd H(x)dx = 1, we compute the integral of e~7” and then choose
¢, appropriately. The integral is slightly modified Gaussian integral, so we use Fubini’s

theorem:
o] d 71_cl
/ e~ g = (/ e’ dx) = \/j :
R* oo a

This means that the integral of H is correct if we choose ¢, = (£)%/2,



It remains to prove for all z € R? the estimate

C

|H(z)] < A% 2t

For this, observe that it is sufficient to prove for any non-negative real x that

Consider the function g : [0,00) — R, g(z) = (1 + x)d+le_“$2. Using I’'Hospital’s rule, we
see that lim, . g(z) = 0. This means that there is a constant M such that g(x) <1 for
x > M. As g is continuos, it has a finite maximum in the interval [0, M], and therefore ¢
is a bounded function.

We have shown that H satisfies the conditions of the previous exercise with constant
Ca = (%)d/2-

Exercise 8*. Prove the formula Z cos(na) = e“®% cos(sin(x)).

n=0

n!

Solution 8*. Using the Taylor expansion of the exponential function we have

inT

iz e =L cos(nr) = sin(nz)
exp(e ):Z ! :Z ! +ZZ ol

n=0 ’ n=0 n=0
Similarly
iy €T Sncos(n) - sin(nx)
exp(e )_Z n! n! _Zz n!
n=0 n=0 n=0
So ‘ .
exp(e'”) +exp(e™) Z cos(nx)
2 B —~ n!
And

e eiz +e e—iac ecosxeisinm + ecosze—isinm )
Xp( ) 5 Xp( ) — 5 — GCOSICOS(SID(ZL')).




