FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 5

Exercise 1. Compute the Fourier transform of the characteristic function $\chi_{[-a, a]}($ here $a>0)$.
Solution 1. By definition,

$$
\widehat{\chi}_{[-a, a]}(\xi)=\int_{-a}^{a} e^{-i \xi x} d x=\frac{e^{-i \xi a}-e^{i \xi a}}{-i \xi}=\frac{2 \sin (a \xi)}{\xi}
$$

Exercise 2. (i) Compute the convolution $\chi_{[-a, a]} * \chi_{[-a, a]}$.
(ii) Compute the Fourier transform (in one dimension) of the function $g(x)=\max (0,1-|x|)$.

Solution 2. (i) A straightforward computation shows that

$$
\chi_{[-a, a]} * \chi_{[-a, a]}(x)=\int_{-a}^{a} \chi_{[-a, a]}(x-y) d y=\max (0,2 a-|x|) .
$$

(ii) By (i) we see that $g(x)=\chi_{[-1 / 2,1 / 2]} * \chi_{[-1 / 2,1 / 2]}(x)$. Using Exercise 1, we get

$$
\widehat{g}(\xi)=\left(\widehat{\chi}_{[-1 / 2,1 / 2]}(\xi)\right)^{2}=\frac{4 \sin ^{2}(\xi / 2)}{\xi^{2}}
$$

Exercise 3. Compute the Fourier transform $f: \mathbb{R} \rightarrow \mathbb{R}$, where $f(x):=e^{-k|x|}($ here $k>0)$: show that

$$
\widehat{f}(\xi)=\frac{2 k}{k^{2}+\xi^{2}}
$$

Solution 3. This is a pretty straightforward computation

$$
\begin{aligned}
\widehat{f}(\xi) & =\int_{-\infty}^{\infty} e^{-i \xi x} e^{-k|x|} d x \\
& =\int_{0}^{\infty} e^{-(i \xi+k) x} d x+\int_{-\infty}^{0} e^{-(i \xi-k) x} d x \\
& =\left[\frac{1}{-(i \xi+k)} e^{-(i \xi+k) x}\right]_{0}^{\infty}+\left[\frac{1}{-(i \xi-k)} e^{-(i \xi-k) x}\right]_{-\infty}^{0} \\
& =\frac{1}{i \xi+k}-\frac{1}{i \xi-k} \\
& =\frac{2 k}{k^{2}+\xi^{2}}
\end{aligned}
$$

Here we have used the facts that

$$
\lim _{x \rightarrow \infty} e^{-(i \xi+k) x}=0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} e^{-(i \xi-k) x}=0
$$

following from $\left|e^{-(i \xi+k) x}\right|=e^{-k x}$ and $\left|e^{-(i \xi-k) x}\right|=e^{k x}$.

Exercise 4. (i) If $f \in L^{1}\left(\mathbb{R}^{d}\right)$ and $g(x)=\overline{f(-x)}$, show that $\widehat{g}(\xi) \equiv \overline{f(\xi)}$.
(ii) If $f \in L^{1}\left(\mathbb{R}^{d}\right)$ and $g(x)=\frac{1}{t^{d}} f\left(\frac{x}{t}\right), t>0$, show that $\widehat{g}(\xi) \equiv \widehat{f}(t \xi)$.

Solution 4. (i) We compute simply that

$$
\begin{aligned}
\widehat{g}(\xi) & =\int_{\mathbb{R}^{d}} e^{-i \xi \cdot x} \overline{f(-x)} d x \\
& =\int_{\mathbb{R}^{d}} e^{i \xi \cdot x} \overline{f(x)} d x \\
& =\int_{\mathbb{R}^{d}} \overline{e^{-i \xi \cdot x} f(x)} d x \\
& =\int_{\mathbb{R}^{d}} e^{-i \xi \cdot x} f(x) d x \\
& =\widehat{f(\xi)} .
\end{aligned}
$$

(ii) Using the change of variables $y=x / t=\left(x_{1} / t, x_{2} / t, \ldots, x_{n} / t\right)$ whose Jacobian determinant is equal to $1 / t^{d}$, we find that

$$
\begin{aligned}
\widehat{g}(\xi) & =\int_{\mathbb{R}^{d}} e^{-i \xi \cdot x} f\left(\frac{x}{t}\right) \frac{1}{t^{d}} d x \\
& =\int_{\mathbb{R}^{d}} e^{-i \xi \cdot t y} f(y) d y \\
& =\int_{\mathbb{R}^{d}} e^{-i t \xi \cdot y} f(y) d y \\
& =\widehat{f}(t \xi) .
\end{aligned}
$$

Exercise 5. Suppose that the function $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ has the form

$$
f(x)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \cdots f_{d}\left(x_{d}\right), \quad \forall x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}
$$

where $f_{1}, \ldots, f_{d} \in L^{1}\left(\mathbb{R}^{1}\right)$. Show that then $f \in L^{1}\left(\mathbb{R}^{d}\right)$ and we have

$$
\widehat{f}(\xi)=\widehat{f}_{1}\left(\xi_{1}\right) \widehat{f}_{2}\left(\xi_{2}\right) \cdots \widehat{f}_{d}\left(\xi_{d}\right) \quad \forall \xi=\left(\xi_{1}, \ldots, \xi_{d}\right) \in \mathbb{R}^{d}
$$

Solution 5. Applying Fubini's theorem for non-negative functions, we see that $\int_{\mathbb{R}^{d}}|f(x)| d x=$ $\int_{-\infty}^{\infty}\left|f_{1}\left(x_{1}\right)\right| d x_{1} \int_{-\infty}^{\infty}\left|f_{2}\left(x_{2}\right)\right| d x_{2} \cdots \int_{-\infty}^{\infty}\left|f_{d}\left(x_{d}\right)\right| d x_{d}<\infty$. As $f \in L^{1}\left(\mathbb{R}^{d}\right)$, we can now apply Fubini's theorem and compute the Fourier transform. If $d>1$, we can define a function $g: \mathbb{R}^{d-1} \rightarrow \mathbb{C}$ by setting $g(x)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \cdots f_{d-1}\left(x_{d-1}\right)$ and denote $\widetilde{\xi}=$
$\left(\xi_{1}, \ldots, \xi_{d-1}\right)$. We may then compute

$$
\begin{aligned}
\widehat{f}(\xi) & =\int_{\mathbb{R}^{d}} f(x) e^{-i \xi \cdot x} d x \\
& =\int_{-\infty}^{\infty} \int_{\mathbb{R}^{d-1}} g(y) f_{d}\left(x_{d}\right) e^{-i\left(\tilde{\xi} y+\xi_{d} x_{d}\right)} d y d x_{d} \\
& =\int_{-\infty}^{\infty} f_{d}\left(x_{d}\right) e^{-i \xi_{d} x_{d}} \int_{\mathbb{R}^{d-1}} g(y) e^{-i \tilde{\xi} \cdot y} d y d x_{d} \\
& =\int_{-\infty}^{\infty} f_{d}\left(x_{d}\right) e^{-i \xi_{d} x_{d}} \widehat{g}(\widetilde{\xi}) d x_{d} \\
& =\widehat{f}_{d}\left(\xi_{d}\right) \widehat{g}(\widetilde{\xi}) .
\end{aligned}
$$

Now g is a function defined on \mathbb{R}^{d-1} so we can use induction to deduce

$$
\widehat{f}(\xi)=\widehat{f}_{1}\left(\xi_{1}\right) \widehat{f}_{2}\left(\xi_{2}\right) \cdots \widehat{f}_{d}\left(\xi_{d}\right)
$$

Exercise 6. Assume that $H \in L^{1}\left(\mathbb{R}^{d}\right)$ fulfils $H \geq 0$, and $\int_{\mathbb{R}^{d}} H(x) d x=1$, together with

$$
|H(x)| \leq \frac{C}{(1+|x|)^{d+1}} .
$$

For $\varepsilon>0$ let us denote $H_{\varepsilon}(x):=\varepsilon^{-d} H(x / \varepsilon)$. If $f \in L^{1}\left(\mathbb{R}^{d}\right)$ is continuous at 0 , prove that

$$
\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{d}} f(x) H_{\varepsilon}(x) d x=f(0)
$$

Solution 6. Let $\eta>0$ be arbitrary. By continuity of f we can find $\delta>0$ such that $\mid f(x)-$ $f(0) \mid<\eta$ when $|x|<\delta$.
Now as $\int_{\mathbb{R}^{d}} H_{\varepsilon}(x) d x=\int_{\mathbb{R}^{d}} H(x) d x=1$, we have

$$
\left|\int_{\mathbb{R}^{d}} f(x) H_{\varepsilon}(x) d x-f(0)\right|=\left|\int_{\mathbb{R}^{d}}(f(x)-f(0)) H_{\varepsilon}(x) d x\right| .
$$

Split the integral in three parts:

$$
\int_{B(0, \delta)}(f(x)-f(0)) H_{\varepsilon}(x) d x+\int_{\mathbb{R}^{d} \backslash B(0, \delta)} f(x) H_{\varepsilon}(x) d x-\int_{\mathbb{R}^{d} \backslash B(0, \delta)} f(0) H_{\varepsilon}(x) d x .
$$

Then in the first integral $|x|<\delta$, so $|f(x)-f(0)|<\eta$. Now we have

$$
\left|\int_{B(0, \delta)}(f(x)-f(0)) H_{\varepsilon}(x) d x\right| \leq \int_{B(0, \delta)} \eta H_{\varepsilon}(x) d x \leq \eta .
$$

We can estimate the second integral as

$$
\begin{aligned}
\left|\int_{\mathbb{R}^{d} \backslash B(0, \delta)} f(x) H_{\varepsilon}(x) d x\right| & =\left|\int_{\mathbb{R}^{d} \backslash B(0, \delta)} f(x) \frac{H(x / \varepsilon)}{\varepsilon^{d}} d x\right| \\
& \leq \int_{\mathbb{R}^{d} \backslash B(0, \delta)}|f(x)| \frac{C}{\varepsilon^{d}(1+|x / \varepsilon|)^{d+1}} d x \\
& \leq \int_{\mathbb{R}^{d} \backslash B(0, \delta)}|f(x)| \frac{C}{(1+\delta / \varepsilon)^{d+1}} \frac{1}{\varepsilon^{d}} d x \\
& \leq \int_{\mathbb{R}^{d} \backslash B(0, \delta)}|f(x)| C \frac{\varepsilon}{(\varepsilon+\delta)^{d+1}} d x \\
& \leq\|f\|_{L^{1}} C \frac{\varepsilon}{\delta^{d+1}} \rightarrow 0 .
\end{aligned}
$$

For the third integral, we can apply dominated convergence theorem to compute

$$
\begin{aligned}
\left|\int_{\mathbb{R}^{d} \backslash B(0, \delta)} f(0) H_{\varepsilon}(x) d x\right| & =\left|\int_{\mathbb{R}^{d} \backslash B(0, \delta)} f(0) \frac{H(x / \varepsilon)}{\varepsilon^{d}} d x\right| \\
& =\left|\int_{\mathbb{R}^{d} \backslash B(0, \delta / \varepsilon)} f(0) H(x) d x\right| \\
& \leq \int_{\mathbb{R}^{d} \backslash B(0, \delta / \varepsilon)}|f(0)| H(x) d x \rightarrow 0 .
\end{aligned}
$$

We have shown that

$$
\limsup _{\varepsilon \rightarrow 0}\left|\int_{\mathbb{R}^{d}} f(x) H_{\varepsilon}(x) d x-f(0)\right| \leq \eta
$$

As $\eta>0$ was arbitrary, we have shown that

$$
\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{d}} f(x) H_{\varepsilon}(x) d x=f(0)
$$

Exercise 7. Let $a>0$. Check that the function $H(x):=c_{a} e^{-a|x|^{2}}$ with a suitable constant c_{a} satisfies the conditions of the previous exercise. What is the value of c_{a} ?

Solution 7. As the real exponential function is always positive, we have that $H(x) \geq 0$ if $c_{a} \geq 0$.
For the property $\int_{\mathbb{R}^{d}} H(x) d x=1$, we compute the integral of $e^{-a|x|^{2}}$ and then choose c_{a} appropriately. The integral is slightly modified Gaussian integral, so we use Fubini's theorem:

$$
\int_{\mathbb{R}^{d}} e^{-a|x|^{2}} d x=\left(\int_{-\infty}^{\infty} e^{-a x^{2}} d x\right)^{d}=\sqrt{\frac{\pi^{d}}{a}}
$$

This means that the integral of H is correct if we choose $c_{a}=\left(\frac{a}{\pi}\right)^{d / 2}$.

It remains to prove for all $x \in \mathbb{R}^{d}$ the estimate

$$
|H(x)| \leq \frac{C}{(1+|x|)^{d+1}} .
$$

For this, observe that it is sufficient to prove for any non-negative real x that

$$
c_{a} e^{-a x^{2}} \leq \frac{C}{(1+x)^{d+1}} .
$$

Consider the function $g:[0, \infty) \rightarrow \mathbb{R}, g(x)=(1+x)^{d+1} e^{-a x^{2}}$. Using l'Hospital's rule, we see that $\lim _{x \rightarrow \infty} g(x)=0$. This means that there is a constant M such that $g(x) \leq 1$ for $x>M$. As g is continuos, it has a finite maximum in the interval $[0, M]$, and therefore g is a bounded function.

We have shown that H satisfies the conditions of the previous exercise with constant $c_{a}=\left(\frac{a}{\pi}\right)^{d / 2}$.

Exercise $\mathbf{8}^{*}$. Prove the formula $\sum_{n=0}^{\infty} \frac{\cos (n x)}{n!}=e^{\cos x} \cos (\sin (x))$.
Solution $\mathbf{8}^{*}$. Using the Taylor expansion of the exponential function we have

$$
\exp \left(e^{i x}\right)=\sum_{n=0}^{\infty} \frac{e^{i n x}}{n!}=\sum_{n=0}^{\infty} \frac{\cos (n x)}{n!}+i \sum_{n=0}^{\infty} \frac{\sin (n x)}{n!}
$$

Similarly

$$
\exp \left(e^{-i x}\right)=\sum_{n=0}^{\infty} \frac{e^{-i n x}}{n!}=\sum_{n=0}^{\infty} \frac{\cos (n x)}{n!}-i \sum_{n=0}^{\infty} \frac{\sin (n x)}{n!}
$$

So

$$
\frac{\exp \left(e^{i x}\right)+\exp \left(e^{-i x}\right)}{2}=\sum_{n=0}^{\infty} \frac{\cos (n x)}{n!} .
$$

And

$$
\frac{\exp \left(e^{i x}\right)+\exp \left(e^{-i x}\right)}{2}=\frac{e^{\cos x} e^{i \sin x}+e^{\cos x} e^{-i \sin x}}{2}=e^{\cos x} \cos (\sin (x)) .
$$

