
FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 4

Exercise 1. (i) Show that if fn → f and gn → g in L2(−π, π) (i.e. converging in the
L2-norm), then

(fn, gn)L2 → (f, g)L2 as n→∞.

(ii) Prove the Pythagorean theorem in L2(−π, π), that is, show that

‖f + g‖2L2 = ‖f‖2L2 + ‖g‖2L2 if f ⊥ g and f, g ∈ L2(−π, π).

Solution 1. (i) Note that if fn is a converging sequence in L2, then it is also a bounded
sequence in L2. This is because

||fn||2 ≤ ||f ||2 + ||f − fn||2,

and the right hand side remains bounded as n→∞. Hence ||fn||2 ≤M for some constant
M . We now write that

(fn, gn)L2 − (f, g)L2 = (fn, gn − g)L2 + (fn − f, g)L2 .

By the Cauchy-Schwartz inequality, (a, b)L2 ≤ ||a||2||b||2 for all a, b ∈ L2, so we get that

|(fn, gn)L2 − (f, g)L2| ≤M ||gn − g||2 + ||fn − f ||2||g||2.

The right hand side converges to zero as n → ∞, so the left hand side must converge to
zero too. This proves the result.

(ii) If f⊥g, then (f, g)L2 = 0. The result is now proven with the simple computation

||f + g||22 = (f + g, f + g)L2

= (f, f + g)L2 + (g, f + g)L2

= (f, f)L2 + (f, g)L2 + (f, g)L2 + (g, g)L2

= (f, f)L2 + (g, g)L2

= ||f ||22 + ||g||22.

Exercise 2. Suppose f ∈ C1
#(−π, π). Show that the Fourier series of f converges absolutely,

i.e. we have
∑
|f̂(n)| <∞.

Solution 2. Suppose f is in C1
#(−π, π). Then the Fourier coefficients of f ′ are well-defined

and for all n ∈ Z we have the formula

f̂ ′(n) = inf̂(n).
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We now apply the Cauchy-Schwartz inequality to the two sequences

(1/n)∞n=1 and (|f̂ ′(n)|)∞n=1.

The first one is obviously in `2, and the second one is too since by Plancherel’s formula

∞∑
n=−∞

|f̂ ′(n)|2 =
1

2π

∫ π

−π
|f ′(x)|2dx <∞.

Thus we have that
∞∑
n=1

|f̂(n)| =
∞∑
n=1

1

n
|f̂ ′(n)|

≤

(
∞∑
n=1

1

n2

)1/2( ∞∑
n=1

|f̂ ′(n)|2
)1/2

<∞.

Similarly we see that
−1∑

n=−∞

|f̂(n)| <∞.

Hence
∞∑

n=−∞

|f̂(n)| =
−1∑

n=−∞

|f̂(n)|+ |f̂(0)|+
∞∑
n=1

|f̂(n)| <∞.

Thus the Fourier series of f converges absolutely.

Exercise 3. (i) Show that for every 2π-periodic function f ∈ L1[−π, π] we have

f̂(n) =
1

4π

∫ 2π

0

e−inx
(
f(x)− f(x+ π/n)

)
dx.

(ii) If f ∈ C#(−π, π) is Hölder-continuous with exponent α ∈ (0, 1], show that

|f̂(n)| ≤ C|n|−α, for |n| ≥ 1.

Solution 3. (i) Making a change of variables x = t+ π/n we find that

f̂(n) =
1

2π

∫ π

−π
e−inxf(x) dx

=
1

2π

∫ π−π/n

−π−π/n
e−in(t+π/n)f(t+ π/n) dt

= − 1

2π

∫ π−π/n

−π−π/n
e−intf(t+ π/n) dt

= − 1

2π

∫ 2π

0

e−intf(t+ π/n) dt
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We were able to replace the interval [−π − π/n, π − π/n] with [0, 2π] in the last step by
the 2π-periodicity of the function e−intf(t + π/n). Now we find the required formula by
the calculation

f̂(n) =
1

2

(
f̂(n) + f̂(n)

)
=

1

2

[
1

2π

∫ 2π

0

e−inxf(x) dx+

(
− 1

2π

∫ 2π

0

e−intf(t+ π/n) dt

)]
=

1

4π

∫ 2π

0

e−inx
(
f(x)− f(x+ π/n)

)
dx.

(ii) Suppose f is Hölder-continuous with exponent α. Then

|f(x)− f(x+ π/n)| ≤
∣∣∣π
n

∣∣∣α = πα|n|−α,

and hence by part (i)

|f̂(n)| ≤ 1

4π

∫ 2π

0

|f(x)− f(x+ π/n)| dx ≤ 1

4π

∫ 2π

0

πα|n|−αdx =
1

2
πα|n|−α.

This proves what we wanted.

Exercise 4. Let f ∈ L2(−π, π). Find the trigonometric polynomial p(x) :=
∑N

n=−N cne
inx

which is closest to f in L2-norm, i.e. find the coefficients cn that minimise the quantity

1

2π

∫ π

−π

∣∣∣f(x)−
N∑

n=−N

cne
inx
∣∣∣2dx

Solution 4. Using Plancherel’s formula we see that if we denote cn = 0 for any |n| > N , we
have

1

2π

∫ π

−π

∣∣∣f(x)−
N∑

n=−N

cne
inx
∣∣∣2 dx =

∞∑
n=−∞

|f̂(n)− cn|2 ≥
∑
|n|>N

|f̂(n)|2.

The equality holds if |f̂(n)− cn| = 0 for any |n| ≤ N , in other words when cn = f̂(n). So
the closest trigonometric polynomial in L2-norm is the partial sum of the Fourier series.

Exercise 5. Assume that f ∈ C2
# and

∫ π
−π f(x)dx = 0. Prove the inequality∫ π

−π
|f(x)|2dx ≤

∫ π

−π
|f ′′(x)|2dx.

When do you have equality here?
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Solution 5. We apply Plancherel’s formula to see that

1

2π

∫ π

−π
|f(x)|2 dx =

∞∑
n=−∞

|f̂(n)|2.

As f̂ ′(n) = inf̂(n), we also have

1

2π

∫ π

−π
|f ′′(x)|2 dx =

∞∑
n=−∞

|(in)2f̂(n)|2 =
∞∑

n=−∞

n4|f̂(n)|2.

We can then use the estimate n4 ≥ 1 for any n 6= 0 to get∫ π

−π
|f ′′(x)|2 dx = 2π

∞∑
n=−∞

n4|f̂(n)|2 ≥ 2π
∑
n6=0

|f̂(n)|2

Because
∫ π
−π f(x)dx = 0, we know that f̂(0) = 0. This means that∫ π

−π
|f ′′(x)|2 dx ≥ 2π

∑
n6=0

|f̂(n)|2 = 2π
∞∑

n=−∞

|f̂(n)|2 =

∫ π

−π
|f(x)|2 dx.

For equality to hold, we must have n4|f̂(n)|2 = |f̂(n)|2 for all n. This in particular

means that f̂(n) = 0 whenever |n| 6= 1. So the equality can only hold when f(x) =

f̂(1)eix + f̂(−1)e−ix. We see that for any such function f the equality does indeed hold.

Exercise 6. Compute the Fourier series of f(x) = x2, x ∈ (−π, π) and compute the L2-norm
of f in two ways: first by direct computation and then using the Fourier-coefficients. Use
this to compute the

∑∞
n=1 n

−4.

Solution 6. A direct computation shows that

1

2π

∫ π

−π
|f(x)|2 dx =

1

2π

∫ π

−π
x4 dx =

π4

5
.

Next, we compute the Fourier coefficients f̂(n). For n = 0 we have

f̂(0) =
1

2π

∫ π

−π
x2 dx =

π2

3
.
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For n 6= 0 we use integration by parts:

f̂(n) =
1

2π

∫ π

−π
x2e−inx dx

=
1

2π

[
1

−in
(π2e−inπ − (−π)2einπ)−

∫ π

−π

2x

−in
e−inx dx

]
=

1

2π

∫ π

−π

2x

in
e−inx dx

=
1

2π

[
1

n2
(2πe−inπ − 2(−π)einπ)−

∫ π

−π

2

n2
e−inx dx

]
=

2(−1)n

n2
.

Using Plancherel’s formula, we know that

1

2π

∫ π

−π
|f(x)|2 dx =

∞∑
n=−∞

|f̂(n)|2.

This means that we have

π4

5
=

(
π2

3

)2

+
∑
n6=0

∣∣∣∣2(−1)n

n2

∣∣∣∣2 =
π4

9
+ 2

∞∑
n=1

4

n4
.

We can now solve that
∞∑
n=1

1

n4
=

π4

5
− π4

9

8
=
π4

90

Exercise 7∗. Can you compute
∑∞

n=1 n
−6 with the help of Fourier-series?

Solution 7∗. We consider the function f(x) = x3 − π2x and compute its Fourier coefficients

f̂(n). For n = 0 we have

f̂(0) =
1

2π

∫ π

−π
(x3 − π2x) dx = 0.
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For n 6= 0 we use integration by parts

f̂(n) =
1

2π

∫ π

−π
(x3 − π2x)e−inx dx

=
1

2π

[
0− 0−

∫ π

−π

3x2 − π2

−in
e−inx dx

]
=

1

2π

[∫ π

−π

3x2

in
e−inx dx−

∫ π

−π

π2

in
e−inx dx

]
=

1

2π

[
3π2

n2
(−1)n − 3(−π)2

n2
(−1)n −

∫ π

−π

6x

n2
e−inx dx− 0

]
=

1

2π

[
6π

in3
(−1)n − 6(−π)

in3
(−1)n −

∫ π

−π

6

in3
e−inx dx

]
=

6(−1)n

in3
.

Using Plancehrel’s formula, we now know that

1

2π

∫ π

−π
|f(x)|2 dx =

∞∑
n=−∞

|f̂(n)|2 =
∞∑
n=1

72

n6
.

We compute

1

2π

∫ π

−π
|f(x)|2 dx =

1

2π

∫ π

−π
(x6 − 2π2x4 + π4x2) dx =

8π6

105
.

We can now solve
∞∑
n=1

1

n6
=

π6

945
.

Remark. The chosen extra term π2x simplified the calculations but is not necessary. We
could have instead taken the function x → x3, using the fact that we already know the
two sums

∑
n n
−2 and

∑
n n
−4.
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