FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 4

Exercise 1. (i) Show that if $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ in $L^{2}(-\pi, \pi)$ (i.e. converging in the L^{2}-norm), then

$$
\left(f_{n}, g_{n}\right)_{L^{2}} \rightarrow(f, g)_{L^{2}} \quad \text { as } n \rightarrow \infty
$$

(ii) Prove the Pythagorean theorem in $L^{2}(-\pi, \pi)$, that is, show that

$$
\|f+g\|_{L^{2}}^{2}=\|f\|_{L^{2}}^{2}+\|g\|_{L^{2}}^{2} \quad \text { if } \quad f \perp g \quad \text { and } f, g \in L^{2}(-\pi, \pi) .
$$

Solution 1. (i) Note that if f_{n} is a converging sequence in L^{2}, then it is also a bounded sequence in L^{2}. This is because

$$
\left\|f_{n}\right\|_{2} \leq\|f\|_{2}+\left\|f-f_{n}\right\|_{2},
$$

and the right hand side remains bounded as $n \rightarrow \infty$. Hence $\left\|f_{n}\right\|_{2} \leq M$ for some constant M. We now write that

$$
\left(f_{n}, g_{n}\right)_{L^{2}}-(f, g)_{L^{2}}=\left(f_{n}, g_{n}-g\right)_{L^{2}}+\left(f_{n}-f, g\right)_{L^{2}}
$$

By the Cauchy-Schwartz inequality, $(a, b)_{L^{2}} \leq\|a\|_{2}\|b\|_{2}$ for all $a, b \in L^{2}$, so we get that

$$
\left|\left(f_{n}, g_{n}\right)_{L^{2}}-(f, g)_{L^{2}}\right| \leq M\left\|g_{n}-g\right\|_{2}+\left\|f_{n}-f\right\|_{2}\|g\|_{2}
$$

The right hand side converges to zero as $n \rightarrow \infty$, so the left hand side must converge to zero too. This proves the result.
(ii) If $f \perp g$, then $(f, g)_{L^{2}}=0$. The result is now proven with the simple computation

$$
\begin{aligned}
\|f+g\|_{2}^{2} & =(f+g, f+g)_{L^{2}} \\
& =(f, f+g)_{L^{2}}+(g, f+g)_{L^{2}} \\
& =(f, f)_{L^{2}}+(f, g)_{L^{2}}+\overline{(f, g)_{L^{2}}}+(g, g)_{L^{2}} \\
& =(f, f)_{L^{2}}+(g, g)_{L^{2}} \\
& =\|f\|_{2}^{2}+\|g\|_{2}^{2} .
\end{aligned}
$$

Exercise 2. Suppose $f \in C_{\#}^{1}(-\pi, \pi)$. Show that the Fourier series of f converges absolutely, i.e. we have $\sum|\widehat{f}(n)|<\infty$.

Solution 2. Suppose f is in $C_{\#}^{1}(-\pi, \pi)$. Then the Fourier coefficients of f^{\prime} are well-defined and for all $n \in \mathbb{Z}$ we have the formula

$$
\widehat{f}^{\prime}(n)=i n \widehat{f}(n) .
$$

We now apply the Cauchy-Schwartz inequality to the two sequences

$$
(1 / n)_{n=1}^{\infty} \quad \text { and } \quad\left(\left|\widehat{f^{\prime}}(n)\right|\right)_{n=1}^{\infty}
$$

The first one is obviously in ℓ^{2}, and the second one is too since by Plancherel's formula

$$
\sum_{n=-\infty}^{\infty}\left|\widehat{f}^{\prime}(n)\right|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f^{\prime}(x)\right|^{2} d x<\infty
$$

Thus we have that

$$
\begin{aligned}
\sum_{n=1}^{\infty}|\widehat{f}(n)| & =\sum_{n=1}^{\infty} \frac{1}{n}\left|\widehat{f^{\prime}}(n)\right| \\
& \leq\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}}\right)^{1 / 2}\left(\sum_{n=1}^{\infty}\left|\widehat{f}^{\prime}(n)\right|^{2}\right)^{1 / 2} \\
& <\infty
\end{aligned}
$$

Similarly we see that

$$
\sum_{n=-\infty}^{-1}|\widehat{f}(n)|<\infty
$$

Hence

$$
\sum_{n=-\infty}^{\infty}|\widehat{f}(n)|=\sum_{n=-\infty}^{-1}|\widehat{f}(n)|+|\widehat{f}(0)|+\sum_{n=1}^{\infty}|\widehat{f}(n)|<\infty .
$$

Thus the Fourier series of f converges absolutely.
Exercise 3. (i) Show that for every 2π-periodic function $f \in L^{1}[-\pi, \pi]$ we have

$$
\widehat{f}(n)=\frac{1}{4 \pi} \int_{0}^{2 \pi} e^{-i n x}(f(x)-f(x+\pi / n)) d x
$$

(ii) If $f \in C_{\#}(-\pi, \pi)$ is Hölder-continuous with exponent $\alpha \in(0,1]$, show that

$$
|\widehat{f}(n)| \leq C|n|^{-\alpha}, \quad \text { for }|n| \geq 1
$$

Solution 3. (i) Making a change of variables $x=t+\pi / n$ we find that

$$
\begin{aligned}
\widehat{f}(n) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i n x} f(x) d x \\
& =\frac{1}{2 \pi} \int_{-\pi-\pi / n}^{\pi-\pi / n} e^{-i n(t+\pi / n)} f(t+\pi / n) d t \\
& =-\frac{1}{2 \pi} \int_{-\pi-\pi / n}^{\pi-\pi / n} e^{-i n t} f(t+\pi / n) d t \\
& =-\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i n t} f(t+\pi / n) d t
\end{aligned}
$$

We were able to replace the interval $[-\pi-\pi / n, \pi-\pi / n]$ with $[0,2 \pi]$ in the last step by the 2π-periodicity of the function $e^{-i n t} f(t+\pi / n)$. Now we find the required formula by the calculation

$$
\begin{aligned}
\widehat{f}(n) & =\frac{1}{2}(\widehat{f}(n)+\widehat{f}(n)) \\
& =\frac{1}{2}\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i n x} f(x) d x+\left(-\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i n t} f(t+\pi / n) d t\right)\right] \\
& =\frac{1}{4 \pi} \int_{0}^{2 \pi} e^{-i n x}(f(x)-f(x+\pi / n)) d x
\end{aligned}
$$

(ii) Suppose f is Hölder-continuous with exponent α. Then

$$
|f(x)-f(x+\pi / n)| \leq\left|\frac{\pi}{n}\right|^{\alpha}=\pi^{\alpha}|n|^{-\alpha}
$$

and hence by part (i)

$$
|\widehat{f}(n)| \leq \frac{1}{4 \pi} \int_{0}^{2 \pi}|f(x)-f(x+\pi / n)| d x \leq \frac{1}{4 \pi} \int_{0}^{2 \pi} \pi^{\alpha}|n|^{-\alpha} d x=\frac{1}{2} \pi^{\alpha}|n|^{-\alpha}
$$

This proves what we wanted.
Exercise 4. Let $f \in L^{2}(-\pi, \pi)$. Find the trigonometric polynomial $p(x):=\sum_{n=-N}^{N} c_{n} e^{i n x}$ which is closest to f in L^{2}-norm, i.e. find the coefficients c_{n} that minimise the quantity

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f(x)-\sum_{n=-N}^{N} c_{n} e^{i n x}\right|^{2} d x
$$

Solution 4. Using Plancherel's formula we see that if we denote $c_{n}=0$ for any $|n|>N$, we have

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f(x)-\sum_{n=-N}^{N} c_{n} e^{i n x}\right|^{2} d x=\sum_{n=-\infty}^{\infty}\left|\widehat{f}(n)-c_{n}\right|^{2} \geq \sum_{|n|>N}|\widehat{f}(n)|^{2}
$$

The equality holds if $\left|\widehat{f}(n)-c_{n}\right|=0$ for any $|n| \leq N$, in other words when $c_{n}=\widehat{f}(n)$. So the closest trigonometric polynomial in L^{2}-norm is the partial sum of the Fourier series.
Exercise 5. Assume that $f \in C_{\#}^{2}$ and $\int_{-\pi}^{\pi} f(x) d x=0$. Prove the inequality

$$
\int_{-\pi}^{\pi}|f(x)|^{2} d x \leq \int_{-\pi}^{\pi}\left|f^{\prime \prime}(x)\right|^{2} d x
$$

When do you have equality here?

Solution 5. We apply Plancherel's formula to see that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x=\sum_{n=-\infty}^{\infty}|\widehat{f}(n)|^{2}
$$

As $\widehat{f}^{\prime}(n)=i n \widehat{f}(n)$, we also have

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f^{\prime \prime}(x)\right|^{2} d x=\sum_{n=-\infty}^{\infty}\left|(i n)^{2} \widehat{f}(n)\right|^{2}=\sum_{n=-\infty}^{\infty} n^{4}|\widehat{f}(n)|^{2}
$$

We can then use the estimate $n^{4} \geq 1$ for any $n \neq 0$ to get

$$
\int_{-\pi}^{\pi}\left|f^{\prime \prime}(x)\right|^{2} d x=2 \pi \sum_{n=-\infty}^{\infty} n^{4}|\widehat{f}(n)|^{2} \geq 2 \pi \sum_{n \neq 0}|\widehat{f}(n)|^{2}
$$

Because $\int_{-\pi}^{\pi} f(x) d x=0$, we know that $\widehat{f}(0)=0$. This means that

$$
\int_{-\pi}^{\pi}\left|f^{\prime \prime}(x)\right|^{2} d x \geq 2 \pi \sum_{n \neq 0}|\widehat{f}(n)|^{2}=2 \pi \sum_{n=-\infty}^{\infty}|\widehat{f}(n)|^{2}=\int_{-\pi}^{\pi}|f(x)|^{2} d x
$$

For equality to hold, we must have $n^{4}|\widehat{f}(n)|^{2}=|\widehat{f}(n)|^{2}$ for all n. This in particular means that $\widehat{f}(n)=0$ whenever $|n| \neq 1$. So the equality can only hold when $f(x)=$ $\widehat{f}(1) e^{i x}+\widehat{f}(-1) e^{-i x}$. We see that for any such function f the equality does indeed hold.

Exercise 6. Compute the Fourier series of $f(x)=x^{2}, x \in(-\pi, \pi)$ and compute the L^{2}-norm of f in two ways: first by direct computation and then using the Fourier-coefficients. Use this to compute the $\sum_{n=1}^{\infty} n^{-4}$.

Solution 6. A direct computation shows that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{4} d x=\frac{\pi^{4}}{5} .
$$

Next, we compute the Fourier coefficients $\widehat{f}(n)$. For $n=0$ we have

$$
\widehat{f}(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2} d x=\frac{\pi^{2}}{3} .
$$

For $n \neq 0$ we use integration by parts:

$$
\begin{aligned}
\widehat{f}(n) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2} e^{-i n x} d x \\
& =\frac{1}{2 \pi}\left[\frac{1}{-i n}\left(\pi^{2} e^{-i n \pi}-(-\pi)^{2} e^{i n \pi}\right)-\int_{-\pi}^{\pi} \frac{2 x}{-i n} e^{-i n x} d x\right] \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{2 x}{i n} e^{-i n x} d x \\
& =\frac{1}{2 \pi}\left[\frac{1}{n^{2}}\left(2 \pi e^{-i n \pi}-2(-\pi) e^{i n \pi}\right)-\int_{-\pi}^{\pi} \frac{2}{n^{2}} e^{-i n x} d x\right] \\
& =\frac{2(-1)^{n}}{n^{2}} .
\end{aligned}
$$

Using Plancherel's formula, we know that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x=\sum_{n=-\infty}^{\infty}|\widehat{f}(n)|^{2}
$$

This means that we have

$$
\frac{\pi^{4}}{5}=\left(\frac{\pi^{2}}{3}\right)^{2}+\sum_{n \neq 0}\left|\frac{2(-1)^{n}}{n^{2}}\right|^{2}=\frac{\pi^{4}}{9}+2 \sum_{n=1}^{\infty} \frac{4}{n^{4}}
$$

We can now solve that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\frac{\pi^{4}}{5}-\frac{\pi^{4}}{9}}{8}=\frac{\pi^{4}}{90}
$$

Exercise 7^{*}. Can you compute $\sum_{n=1}^{\infty} n^{-6}$ with the help of Fourier-series?
Solution 7^{*}. We consider the function $f(x)=x^{3}-\pi^{2} x$ and compute its Fourier coefficients $\widehat{f}(n)$. For $n=0$ we have

$$
\widehat{f}(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(x^{3}-\pi^{2} x\right) d x=0
$$

For $n \neq 0$ we use integration by parts

$$
\begin{aligned}
\widehat{f}(n) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(x^{3}-\pi^{2} x\right) e^{-i n x} d x \\
& =\frac{1}{2 \pi}\left[0-0-\int_{-\pi}^{\pi} \frac{3 x^{2}-\pi^{2}}{-i n} e^{-i n x} d x\right] \\
& =\frac{1}{2 \pi}\left[\int_{-\pi}^{\pi} \frac{3 x^{2}}{i n} e^{-i n x} d x-\int_{-\pi}^{\pi} \frac{\pi^{2}}{i n} e^{-i n x} d x\right] \\
& =\frac{1}{2 \pi}\left[\frac{3 \pi^{2}}{n^{2}}(-1)^{n}-\frac{3(-\pi)^{2}}{n^{2}}(-1)^{n}-\int_{-\pi}^{\pi} \frac{6 x}{n^{2}} e^{-i n x} d x-0\right] \\
& =\frac{1}{2 \pi}\left[\frac{6 \pi}{i n^{3}}(-1)^{n}-\frac{6(-\pi)}{i n^{3}}(-1)^{n}-\int_{-\pi}^{\pi} \frac{6}{i n^{3}} e^{-i n x} d x\right] \\
& =\frac{6(-1)^{n}}{i n^{3}} .
\end{aligned}
$$

Using Plancehrel's formula, we now know that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x=\sum_{n=-\infty}^{\infty}|\widehat{f}(n)|^{2}=\sum_{n=1}^{\infty} \frac{72}{n^{6}}
$$

We compute

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(x^{6}-2 \pi^{2} x^{4}+\pi^{4} x^{2}\right) d x=\frac{8 \pi^{6}}{105}
$$

We can now solve

$$
\sum_{n=1}^{\infty} \frac{1}{n^{6}}=\frac{\pi^{6}}{945}
$$

Remark. The chosen extra term $\pi^{2} x$ simplified the calculations but is not necessary. We could have instead taken the function $x \rightarrow x^{3}$, using the fact that we already know the two sums $\sum_{n} n^{-2}$ and $\sum_{n} n^{-4}$.

