FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 4

Exercise 1. (i) Show that if f, — f and g, — ¢ in L*(—m,7) (i.e. converging in the
L?-norm), then
(frrgn)2 = (f,9) 12 as n — oo.

(ii) Prove the Pythagorean theorem in L?*(—m, ), that is, show that
If+gll72 = [1fl72 + gl if flg and fg€L*(—m,m).

Solution 1. (i) Note that if f, is a converging sequence in L? then it is also a bounded
sequence in L?. This is because

fullz < [[fll2 +11f = fall2,

and the right hand side remains bounded as n — oo. Hence ||f,||l2 < M for some constant
M. We now write that

(f’rugn)L2 - (fv g)L2 = (fmgn - g)L2 + (fn - f7 g)L2

By the Cauchy-Schwartz inequality, (a,b)z2 < ||a||2]|b]|2 for all a,b € L?, so we get that

|(frsgn)r2 — (f, 9) 2| < Mllgn — gll2 + || fa — fll2llg]]2-

The right hand side converges to zero as n — 00, so the left hand side must converge to
zero too. This proves the result.

(ii) If fLg, then (f,g)r2 = 0. The result is now proven with the simple computation
f+9.f+9)r

f+9)e+ (g, f+9)re

I1f + gll5 = (
=(f
= (f, fe= + (f, 9)L2+(f 9z +(9,9)r2
= (f,
= |

2 +(9,9)r2
F115 + Mglf3-

Exercise 2. Suppose f € C’#(—ﬂ,w). Show that the Fourier series of f converges absolutely,
i.e. we have Y |f(n)| < occ.

Solution 2. Suppose f is in C’;&(—W, 7). Then the Fourier coefficients of f’ are well-defined
and for all n € Z we have the formula

f'(n) = inf(n).



We now apply the Cauchy-Schwartz inequality to the two sequences
(1/n);y and  ([f(n)])5-

The first one is obviously in ¢, and the second one is too since by Plancherel’s formula
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Similarly we see that

Hence

S 1fml = 3 1701+ FO)]+ 3 1F )] < oo

n=——oo n=—oo

Thus the Fourier series of f converges absolutely.

Exercise 3. (i) Show that for every 2m-periodic function f € L'[—7, 7] we have

fln) = ﬁ/o We‘m(f(x) — f(z +7/n))dz.

ii) If f € Cyu(—m, m) is Holder-continuous with exponent o € (0, 1], show that
#

~

|f(n)| < CIn|™®, for |n| > 1.

Solution 3. (i) Making a change of variables © = ¢ + m/n we find that

fy =5 [ ety ds
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1 T—7/n '
- —in(t+m/n) ¢ dt
) e flt+7/n)
L[ by
= —— e T/n
27 —n—7/n
1 21 )
=5 e ™ f(t + 7 /n)dt
0



We were able to replace the interval [—m — 7/n,m — 7/n] with [0, 27] in the last step by

the 2m-periodicity of the function e ™ f(¢t + m/n). Now we find the required formula by
the calculation

Fn) =5 (Fn) + Flm)

L[ emrtwaes (<L [ mma)]

1 2

- o i e*mm(f(ac) — f(x+7r/n)) dz.
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(ii) Suppose [ is Holder-continuous with exponent «. Then

@) = fa+m/ml < 2] =7l
and hence by part (i)
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Fool < 4 [ @) = fatmmlde < - [ lnede = gl

This proves what we wanted.

Exercise 4. Let f € L*(—m, 7). Find the trigonometric polynomial p(z) := ZLV:_N Cp€®

which is closest to f in L?-norm, i.e. find the coefficients ¢, that minimise the quantity
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Solution 4. Using Plancherel’s formula we see that if we denote ¢, = 0 for any |n| > N, we

have
1 T N o)

f(ﬂ?) _ Z Cneina: 2

n=—N n=—oo \n|>N
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The equality holds if |f(n) — ¢,| = 0 for any |n| < N, in other words when ¢, = f(n). So
the closest trigonometric polynomial in L2-norm is the partial sum of the Fourier series.

Exercise 5. Assume that f € C% and [ f(z)dz = 0. Prove the inequality

[ e < [ irwpe.

When do you have equality here?



Solution 5. We apply Plancherel’s formula to see that

[ @k =3 1Fw)P,

n=—oo

As f'(n) = inf(n), we also have

1 [T >
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We can then use the estimate n* > 1 for any n # 0 to get

/ @R =2 S al F)P > 2n S )P

- n=—00 n#£0

Because ["_ f(z)dz =0, we know that f(O) = 0. This means that
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For equality to hold, we must have n*|f(n)|*> = |f(n)|* for all n. This in particular

o~

means that f(n) = 0 whenever |n| # 1. So the equality can only hold when f(z) =

~ ~

f(1)e® + f(—1)e~*. We see that for any such function f the equality does indeed hold.

Exercise 6. Compute the Fourier series of f(x) = 2%, x € (—7,7) and compute the L?-norm
of f in two ways: first by direct computation and then using the Fourier-coefficients. Use
this to compute the > 7 n~*.

Solution 6. A direct computation shows that
s 4
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2 e — 4 = —
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Next, we compute the Fourier coefficients f(n). For n = 0 we have

f(O) ! /ﬂ$2d$:%2.
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For n # 0 we use integration by parts:
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Using Plancherel’s formula, we know that

[ 1@k =3 1Fw)P,

n=—0oo

This means that we have

mt 72\ > 2(=1)"|* =4
AR - 49 =
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n#0 n=1
We can now solve that
oo 4 w4
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Exercise 7*. Can you compute Y >~ n~% with the help of Fourier-series?
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Solution 7*. We consider the function f(z) = 2 — 7%z and compute its Fourier coefficients

f(n) For n = 0 we have



For n # 0 we use integration by parts
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Using Plancehrel’s formula, we now know that

Wrar= Y for =32

n=—oo n=1
We compute
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We can now solve
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Remark. The chosen extra term 72z simplified the calculations but is not necessary. We
could have instead taken the function # — 23, using the fact that we already know the
twosums ». nZand Y, nh



