FOURIER ANALYSIS. (Fall 2016)

4. EXERCISES (Fri 14.10, 10-12 in room C322)

1. (i) Show that if $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ in $L^{2}(-\pi, \pi) \quad$ (i.e. converging in the L^{2}-norm), then

$$
\left(f_{n}, g_{n}\right)_{L^{2}} \rightarrow(f, g)_{L^{2}} \quad \text { as } n \rightarrow \infty
$$

(ii) Prove the Pythagorean theorem in $L^{2}(-\pi, \pi)$, that is, show that

$$
\|f+g\|_{L^{2}}^{2}=\|f\|_{L^{2}}^{2}+\|g\|_{L^{2}}^{2} \quad \text { if } \quad f \perp g \quad \text { and } f, g \in L^{2}(-\pi, \pi)
$$

2. Suppose $f \in C_{\#}^{1}(-\pi, \pi)$. Show that the Fourier series of f converges absolutely, i.e. we have $\sum|\widehat{f}(n)|<\infty$.
3. (i) Show that for every 2π-periodic function $f \in L^{1}[-\pi, \pi]$ we have

$$
\widehat{f}(n)=\frac{1}{4 \pi} \int_{0}^{2 \pi} e^{-i n x}(f(x)-f(x+\pi / n)) d x
$$

(ii) If $f \in C_{\#}(-\pi, \pi)$ is Hölder-continuous with exponent $\alpha \in(0,1]$, show that

$$
|\widehat{f}(n)| \leq C|n|^{-\alpha}, \quad \text { for }|n| \geq 1
$$

4. Let $f \in L^{2}(-\pi, \pi)$. Find the trigonometric polynomial $p(x):=\sum_{n=-N}^{N} c_{n} e^{i n x}$ which is closest to f in L^{2}-norm, i.e. find the coefficients c_{n} that minimise the quantity

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f(x)-\sum_{n=-N}^{N} c_{n} e^{i n x}\right|^{2} d x
$$

5. Assume that $f \in C_{\#}^{2}$ and $\int_{-\pi}^{\pi} f(x) d x=0$. Prove the inequality

$$
\int_{-\pi}^{\pi}|f(x)|^{2} d x \leq \int_{-\pi}^{\pi}\left|f^{\prime \prime}(x)\right|^{2} d x
$$

When do you have equality here?
6. Compute the Fourier series of $f(x)=x^{2}, x \in(-\pi, \pi)$ and compute the L^{2}-norm of f in two ways: first by direct computation and then using the Fourier-coefficients. Use this to compute the $\sum_{n=1}^{\infty} n^{-4}$.
$\boldsymbol{7}^{* 1}$ Can you compute $\sum_{n=1}^{\infty} n^{-6}$ with the help of Fourier-series?

[^0]
Hints for some of the exercises:

T.2: [Hint: Determine $\widehat{f}(n)$ in terms of $\widehat{f^{\prime}}(n)$, and recall that the Cauchy-Schwarz inequality holds for the inner product $(a, b)_{\ell^{2}}=\sum_{k=-\infty}^{\infty} a_{k} \overline{b_{k}}$ in the space ℓ^{2}, see Lecture notes p. 58 (the C-S holds in every inner product space).]
T.6: [Recall our result on the equidistribution of $\langle\alpha n\rangle$.]

[^0]: ${ }^{1}$ These $*$-exercises are extras for afficinadoes, not required to get full points from exercises

