FOURIER ANALYSIS. (Fall 2016)

4. EXERCISES (Fri 14.10, 10-12 in room C322)

- 1. (i) Show that if $f_n \to f$ and $g_n \to g$ in $L^2(-\pi, \pi)$ (i.e. converging in the L^2 -norm), then $(f_n, g_n)_{L^2} \to (f, g)_{L^2}$ as $n \to \infty$.
 - (ii) Prove the Pythagorean theorem in $L^2(-\pi,\pi)$, that is, show that

$$||f + g||_{L^2}^2 = ||f||_{L^2}^2 + ||g||_{L^2}^2$$
 if $f \perp g$ and $f, g \in L^2(-\pi, \pi)$.

- 2. Suppose $f \in C^1_{\#}(-\pi,\pi)$. Show that the Fourier series of f converges absolutely, i.e. we have $\sum |\widehat{f}(n)| < \infty$.
- **3.** (i) Show that for every 2π -periodic function $f \in L^1[-\pi, \pi]$ we have

$$\widehat{f}(n) = \frac{1}{4\pi} \int_0^{2\pi} e^{-inx} \big(f(x) - f(x + \pi/n) \big) dx.$$

(ii) If $f \in C_{\#}(-\pi,\pi)$ is Hölder-continuous with exponent $\alpha \in (0,1]$, show that

$$|\widehat{f}(n)| \le C|n|^{-\alpha}$$
, for $|n| \ge 1$.

4. Let $f \in L^2(-\pi,\pi)$. Find the trigonometric polynomial $p(x) := \sum_{n=-N}^{N} c_n e^{inx}$ which is closest to f in L^2 -norm, i.e. find the coefficients c_n that minimise the quantity

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| f(x) - \sum_{n=-N}^{N} c_n e^{inx} \right|^2 dx$$

5. Assume that $f \in C^2_{\#}$ and $\int_{-\pi}^{\pi} f(x) dx = 0$. Prove the inequality

$$\int_{-\pi}^{\pi} |f(x)|^2 dx \leq \int_{-\pi}^{\pi} |f''(x)|^2 dx$$

When do you have equality here?

- 6. Compute the Fourier series of $f(x) = x^2$, $x \in (-\pi, \pi)$ and compute the L^2 -norm of f in two ways: first by direct computation and then using the Fourier-coefficients. Use this to compute the $\sum_{n=1}^{\infty} n^{-4}$.
- $\mathbf{7}^{*1}$ Can you compute $\sum_{n=1}^{\infty} n^{-6}$ with the help of Fourier-series?

¹These *-exercises are extras for afficinadoes, not required to get full points from exercises

Hints for some of the exercises:

T.2: [Hint: Determine $\widehat{f}(n)$ in terms of $\widehat{f'}(n)$, and recall that the Cauchy-Schwarz inequality holds for the inner product $(a,b)_{\ell^2} = \sum_{k=-\infty}^{\infty} a_k \overline{b_k}$ in the space ℓ^2 , see Lecture notes p. 58 (the C-S holds in every inner product space).]

[Recall our result on the equidistribution of $\langle \alpha n \rangle$.] **T.6**: