FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 3

Exercise 1. (i) Let N € N. Show that there exists a non-trivial function f € L'[—7, 7] such

that Fiy % f(x) =0 for all x.
(ii) TIs there a non-trivial function f € L'[—7, 7] so that Fy * f(x) = 0 for all  and for

all N >07
Solution 1. (i) We can choose the function f as f(x) = /™% Now we have f(n) =0 for

any n # N + 1 and so

Fynx f(x) = Nz_:l <N]_V|n|)f('rz)emz = 0.

n=—(N-1)
(ii) There is no such function. As the Fejer kernels are a good sequence of kernels, we know
that || f — Fy * f||21(—rx) goes to zero as N goes to infinity. Assuming that Fiy * f(z) =0

for all x and for all N gives us
[fllzr—rmy = Il = Fn o fllzr-rm) — O

This means that || f||1(—x,x = 0, so f(z) = 0 for almost every z.

Exercise 2. Use the results of lectures and verify that the Fourier-series of an integrable

function converges at any point of differentiability of f.
Solution 2. Let f € L'(—m,7) be 27r-periodic and differentiable at x,. We apply Dini’s

criterion. We need to show that

/7r f(l’o—i-t)—Ff(.’ﬂo—t) —f($0)

2
We can write this equivalently as
/ﬂ L] flxo+1t) — f(zo) | flwo—1t) — f(®0)
= +
) 2 t t
As f is differentiable at xy there exists 6 > 0 such that for 0 <t < § we have

max{ flxo+1) — flwo)| | f(xo—1t) — f(0) }<\f’(x0)|+1.

t t
We can then estimate

dt
— < Q.
t

dt < oo.

Y

dt

2 t

/ﬂl f(l'o—i‘t)—f(xo)+f($0—t)—f(370)
0 t

6 ™
< / S (@)l +2)dt + / o= (1o + 8] + 21 (o)l + |f o — 1))

< o1 )| + 1) + DI o



Exercise 3. Suppose the sequence (x,,)3 ; is equidistributed (mod 1) and a € Z \ {0}. Show
that then also the sequence (azx,)32; is equidistributed (mod 1).

Does the result hold when o ¢ Q ?

Solution 3. We use Weyl’s criterion. Suppose (z,) is equidistributed mod 1. Then by the
criterion the equality

1 n—1
lim — E e?rilze —
n—oo M
k=0

holds for every [ € Z\ {0}. If it holds for all such [, it also holds for | = al’, where !’ runs
over the nonzero integers. Thus it holds also that

n—1

lim ~ g e2mialze — 0 forall I’ € Z\ {0}

which shows that (ax,,) is equidistributed by Weyl’s criterion.

If a is allowed to be an irrational number, the result doesn’t hold. For example, the
sequence (ny/2) is equidistributed mod 1 by Corollary 5.4 of the lecture notes, but the

sequence (1/(2)n/v/2) = (n) = (0) is not.
Extra: For a € Q \ Z the result is also not true, since if (z,) is a sequence of numbers on

the interval [0, 1] that is equidistributed, then the sequence (x,,/2) lies only on the interval
[0,1/2] and is therefore not equidistributed.

)
n=1

Exercise 4. Show that the sequence (< alogn >)32, is not equidistributed (mod 1) for any

a € R.

Solution 4. Let a be a real number. If a is zero then obviously (alogn) is not equidistributed,
so assume a # 0. We then apply Weyl’s criterion. It needs to be shown that for some
non-zero integer k the sequence of partial sums

1 N
§ : 2miak logn
- e
N
n=1

does not converge to zero as N — co. We will show this for £ = 1. We now simplify that

N N
1 2mialogn __ 1 2mia
- e = — n
N N

n=1 n=1

The corresponding integral is

1 N+1 o 1 —
TiQ . Tia+
N/l v = ey (N DT 1),



This diverges as N — oo, since the numbers (N + 1)™ are on the unit circle and go
around it infinitely often as N — oo. We now compare the sum to the integral. If we can
prove that the difference

1 N—+1 o 1 N o
dN:N/l x dx—N;n

converges to zero as N — oo, then it will follow that the original sum cannot converge to
zero. We calculate that

dy =

==

N+12‘ 1 o
/ dr— >

ZIH

Zl'ﬂ
HMZ ||M2 ||M2

27rzadl, n27rm)

2mia+1 __ 27ria+1
( n+ 1 o n27ria)

2mia + 1

1 (1 + l/n)Qm(ﬁ_l —1 1 2mia
— —1])n
N = 2mia + 1 1/n

We now estimate the terms of this sum when n is large. If n is large, 1/n is small and we
can use the Taylor series of the function

fla) = (1 + ariet!

2mia + 1
at the point x = 0 to find the estimate

’f(x) —f0) f’(O)‘ < Cu.

This amounts to ,
1 (1 + 1/n)27rza+1 _ 1

2mia + 1 1/n

1<
n

We now use this together with the fact that [n*™| = 1 when a € R to estimate that

1 (L+1/n)?me+t —1 1) py2wia
—1|n
2mia + 1 1/n

C

n

<

for all positive integers n. Note that while we only proved this for large enough n, we can
choose C' big enough so that it holds for smaller values as well. We then get that

N .
1 2 : 1 (]' + 1/n)27rza+1 —1 2mia

— |2mia + 1 1/n




The right hand side converges to zero as N — oo. Hence the sum

N .
1 3 1 1+ 1/n)iett 1 .
- : ( + /n) -1 n27rza
N &= 2mia +1 1/n

also converges to zero as N — o0.

Exercise 5. Prove Corollary 4.8; that is, show that if a 2r-periodic function f(z) is piecewise
O, then its Fourier series converges at every point, and

flx+1t)+ flz—1)

li =i — .
NgrlooSNf(x) lim 5 , x € [—m,
Solution 5. Let f be piecewise C!, so there exists a partition —7m =ayp < a; < ... <a, =7

such that the restrictions f|(a;,a;11) are C' and one-sided limits Using Exercise 2 we
only need to show the convergence at First of all, we lose no generality if we only show the
convergence at the point zy = 0, since we can always make a substitution F'(z) = f(z+x)
as in the proof of the Dini condition. We hence want to show

tim_ s f(0) = L OEI0Z) )

N—o0 2
where f(0+4) and f(0—) denote the left and right limits of the function f at the point
x = 0. For a piecewise C''-function f these limits always exist but may disagree. We now
apply Lemma 4.2 of the lecture notes. By the lemma, to show that (1) holds it is enough
to check that

/” f@)+ [(=2)  JO4H) +F(O0=)]do _
0 2 2 €T
It will be enough to show that the functions

g+(x) — M and gi(x) _ f(_x) ; f(o—)

are bounded on the interval (0, 7), since

/” f@)+ f(==)  f(O+)+ f(0-)|dz _ 1/” fl@) = f(0+)  fOH) + FOO-)] .
0 2 2 xr 2/ x 2 '
Let us take ¢ > 0 sufficiently small so that f is C'! on the interval (0,¢]. Thenfore <z <

we have that (@) — 0]
x)— J(0+
<
‘g+<$>| — 6 )
which is bounded since f is bounded. When 0 < z < ¢, we use the mean value theorem

to find, for each x, a point &, € (0, x) such that
f(z) — f(0+)

T

Since f is piecewise C!, by definition the derivative f’(z) is continuous on the closed
interval [0, €] and hence bounded. This shows that g, (z) is bounded, and by the same
arguments so is g_(x). Hence the result is proven.

g+ (v) =

4



Exercise 6. Let f € Cy(—m, 7). Assume that f has another period 5 > 0:  f(f+2) = f(x)
for all z. Show that if f is constant if 5/27 is irrational.

Solution 6. Define a new function g by setting g(z) = f(x + ). By Exercise 4 from Set 1,
we know that g(n) = ¢"Bf(n). But as g(x) = f(z+ ) = f(z) for all z, then we also have
g(n) = f(n).

As B/2m is irrational, we know that for any integers n and m we have nf8 # 2mm unless
n =m = 0. This means that "’ # 1 for any n # 0 and we can solve

~ -~

(1 —¢™)f(n) =0so f(n) =0.

As the function h(z) = f(O) has the same Fourier coefficients as f, we know that f(z) =
f(0) almost everywhere. As f was continuous, we have shown that f is constant.

Extra: If we only assume f € L'(—n, ), then the previous computation still shows that

f(z) = f(0) almost everywhere. However, if we define set § = {2nm+mf : n,m € Z}, then
the characteristic function of S is both 27m-periodic and S-periodic, but is not a constant
function.

Exercise 7*. Is the sequence (/n)°2; equidistributed mod 17

Solution 7*. We will show that the sequence is equidistributed mod 1 directly from the
definition. Let (p,q) C [0,1). Then (¥/n) € (p,q) when /n € (p+k, ¢+ k) for some k > 0.
Equivalently

n € (k* 4 3pk? + 3p°k + p®, k® + 3¢k* + 3¢°k + ¢°).

We denote ]
Ay = NI{W/@ € (p,q): 1 <n< N}

Now Ay increases when N goes through numbers in interval (k3 + 3pk? + 3p*k + p3, k* +
3qk* + 3¢k + ¢3) for some k and decreases elsewhere. This means that Ay has a local
maximum when N = [k? + 3¢gk® + 3¢°k + ¢*] — 1, just before it starts decreasing. When
N = [k3 + 3¢k® + 3¢°k + ¢*] — 1 we have

S o +3q12 + 3¢%1+ ¢° — (I3 + 3pl2 + 3p*1 + p*) + 1)
N
(q—pk(k+1)2k+1)/2+ (¢ —p*)3k(k +1)/2+ (k+1)(¢* —p* + 1)
N
_ la=pk(k+1)(k +3) + (¢* = p")3k(k + 1)/2+ (k + (¢’ —p* + 1)
- k3 + 3qk? 4 3¢?k + ¢ — 2

Ay <

As this expression is a rational function with both denominator and numerator having



degree 3, we see that

(q = pk(k +1)(k+3) + (¢* — p*)3k(k + 1)/2+ (k+ 1)(¢* —p* +1)
k3 4+ 3qk? + 3¢%k + ¢ — 2
(—p)A+E A+ + (@ —p)3k A +E /24 (K2 +E7°)(¢" —p* +1)
1+ 3¢k=1 + 3¢%2k=2 + ¢?k—3 — 2k 3

An <

—q—-p

This means that limsupy_,., Ay < ¢ — p. Similarly Ay has a local minimum whenever
N = | k3 + 3pk? + 3p*k + p®]. Then

Mo (P4 3ql% + 321+ ¢ — (I + 3pl2 4+ 3p2L + pP) — 1)
N
(¢ —p)k(k —1)(2k —1)/2+ (¢* — p*)3k(k — 1)/2 + k(¢* — p* — 1)
N
o (@=p)k(k = 1)(k - 5)+ (@ —p)3k(k—1)/2+ k(¢* —p* — 1)
- k3 + 3pk? + 3p%k + p?
(q—p) A=k Q=3+ (P -3k (1 —k1)/2+k2(¢—p*+1)
1+ 3pk=1 4+ 3p?k—2 + p?k—3

Ay >

—q—-p

This shows that liminfy_,.o Ay > g—p. Combining the results, we see that limy_,o Ay =
q — p and the sequence (/n)°2; is equidistributed mod 1.



