FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 3

Exercise 1. (i) Let $N \in \mathbb{N}$. Show that there exists a non-trivial function $f \in L^{1}[-\pi, \pi]$ such that $F_{N} * f(x)=0$ for all x.
(ii) Is there a non-trivial function $f \in L^{1}[-\pi, \pi]$ so that $F_{N} * f(x)=0$ for all x and for all $N \geq 0$?
Solution 1. (i) We can choose the function f as $f(x)=e^{i(N+1) x}$. Now we have $\widehat{f}(n)=0$ for any $n \neq N+1$ and so

$$
F_{N} * f(x)=\sum_{n=-(N-1)}^{N-1}\left(\frac{N-|n|}{N}\right) \widehat{f}(n) e^{i n x}=0 .
$$

(ii) There is no such function. As the Fejer kernels are a good sequence of kernels, we know that $\left\|f-F_{N} * f\right\|_{L^{1}(-\pi, \pi)}$ goes to zero as N goes to infinity. Assuming that $F_{N} * f(x)=0$ for all x and for all N gives us

$$
\|f\|_{L^{1}(-\pi, \pi)}=\left\|f-F_{N} * f\right\|_{L^{1}(-\pi, \pi)} \rightarrow 0
$$

This means that $\|f\|_{L^{1}(-\pi, \pi)}=0$, so $f(x)=0$ for almost every x.
Exercise 2. Use the results of lectures and verify that the Fourier-series of an integrable function converges at any point of differentiability of f.

Solution 2. Let $f \in L^{1}(-\pi, \pi)$ be 2π-periodic and differentiable at x_{0}. We apply Dini's criterion. We need to show that

$$
\int_{0}^{\pi}\left|\frac{f\left(x_{0}+t\right)+f\left(x_{0}-t\right)}{2}-f\left(x_{0}\right)\right| \frac{d t}{t}<\infty
$$

We can write this equivalently as

$$
\int_{0}^{\pi} \frac{1}{2}\left|\frac{f\left(x_{0}+t\right)-f\left(x_{0}\right)}{t}+\frac{f\left(x_{0}-t\right)-f\left(x_{0}\right)}{t}\right| d t<\infty .
$$

As f is differentiable at x_{0} there exists $\delta>0$ such that for $0<t<\delta$ we have

$$
\max \left\{\left|\frac{f\left(x_{0}+t\right)-f\left(x_{0}\right)}{t}\right|,\left|\frac{f\left(x_{0}-t\right)-f\left(x_{0}\right)}{t}\right|\right\}<\left|f^{\prime}\left(x_{0}\right)\right|+1
$$

We can then estimate

$$
\begin{array}{r}
\int_{0}^{\pi} \frac{1}{2}\left|\frac{f\left(x_{0}+t\right)-f\left(x_{0}\right)}{t}+\frac{f\left(x_{0}-t\right)-f\left(x_{0}\right)}{t}\right| d t \\
\leq \int_{0}^{\delta} \frac{1}{2}\left(2\left|f^{\prime}\left(x_{0}\right)\right|+2\right) d t+\int_{\delta}^{\pi} \frac{1}{2 \delta}\left(\left|f\left(x_{0}+t\right)\right|+2\left|f\left(x_{0}\right)\right|+\left|f\left(x_{0}-t\right)\right|\right) d t \\
\leq \delta\left(\left|f^{\prime}\left(x_{0}\right)\right|+1\right)+\frac{2\|f\|_{L^{1}}}{\delta}<\infty .
\end{array}
$$

Exercise 3. Suppose the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ is equidistributed $(\bmod 1)$ and $a \in \mathbb{Z} \backslash\{0\}$. Show that then also the sequence $\left(a x_{n}\right)_{n=1}^{\infty}$ is equidistributed $(\bmod 1)$.
Does the result hold when $\alpha \notin \mathbb{Q}$?
Solution 3. We use Weyl's criterion. Suppose $\left(x_{n}\right)$ is equidistributed mod 1. Then by the criterion the equality

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} e^{2 \pi i l x_{k}}=0
$$

holds for every $l \in \mathbb{Z} \backslash\{0\}$. If it holds for all such l, it also holds for $l=a l^{\prime}$, where l^{\prime} runs over the nonzero integers. Thus it holds also that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} e^{2 \pi i a l^{\prime} x_{k}}=0 \quad \text { for all } l^{\prime} \in \mathbb{Z} \backslash\{0\}
$$

which shows that $\left(a x_{n}\right)$ is equidistributed by Weyl's criterion.
If a is allowed to be an irrational number, the result doesn't hold. For example, the sequence $(n \sqrt{2})$ is equidistributed $\bmod 1$ by Corollary 5.4 of the lecture notes, but the sequence $(\sqrt{(2)} n / \sqrt{2})=(n)=(0)$ is not.
Extra: For $a \in \mathbb{Q} \backslash \mathbb{Z}$ the result is also not true, since if $\left(x_{n}\right)$ is a sequence of numbers on the interval $[0,1]$ that is equidistributed, then the sequence $\left(x_{n} / 2\right)$ lies only on the interval [$0,1 / 2$] and is therefore not equidistributed.

Exercise 4. Show that the sequence $(\langle a \log n\rangle)_{n=1}^{\infty}$ is not equidistributed $(\bmod 1)$ for any $a \in \mathbb{R}$.

Solution 4. Let a be a real number. If a is zero then obviously $(a \log n)$ is not equidistributed, so assume $a \neq 0$. We then apply Weyl's criterion. It needs to be shown that for some non-zero integer k the sequence of partial sums

$$
\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i a k \log n}
$$

does not converge to zero as $N \rightarrow \infty$. We will show this for $k=1$. We now simplify that

$$
\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i a \log n}=\frac{1}{N} \sum_{n=1}^{N} n^{2 \pi i a}
$$

The corresponding integral is

$$
\frac{1}{N} \int_{1}^{N+1} x^{2 \pi i a} d x=\frac{1}{(2 \pi i a+1) N}\left((N+1)^{2 \pi i a+1}-1\right)
$$

This diverges as $N \rightarrow \infty$, since the numbers $(N+1)^{2 \pi i a}$ are on the unit circle and go around it infinitely often as $N \rightarrow \infty$. We now compare the sum to the integral. If we can prove that the difference

$$
d_{N}=\frac{1}{N} \int_{1}^{N+1} x^{2 \pi i a} d x-\frac{1}{N} \sum_{n=1}^{N} n^{2 \pi i a}
$$

converges to zero as $N \rightarrow \infty$, then it will follow that the original sum cannot converge to zero. We calculate that

$$
\begin{aligned}
d_{N} & =\frac{1}{N} \int_{1}^{N+1} x^{2 \pi i a} d x-\frac{1}{N} \sum_{n=1}^{N} n^{2 \pi i a} \\
& =\frac{1}{N} \sum_{n=1}^{N}\left(\int_{n}^{n+1} x^{2 \pi i a} d x-n^{2 \pi i a}\right) \\
& =\frac{1}{N} \sum_{n=1}^{N}\left(\frac{(n+1)^{2 \pi i a+1}-n^{2 \pi i a+1}}{2 \pi i a+1}-n^{2 \pi i a}\right) \\
& =\frac{1}{N} \sum_{n=1}^{N} \frac{1}{2 \pi i a+1}\left(\frac{(1+1 / n)^{2 \pi i a+1}-1}{1 / n}-1\right) n^{2 \pi i a}
\end{aligned}
$$

We now estimate the terms of this sum when n is large. If n is large, $1 / n$ is small and we can use the Taylor series of the function

$$
f(x)=\frac{1}{2 \pi i a+1}(1+x)^{2 \pi i a+1}
$$

at the point $x=0$ to find the estimate

$$
\left|\frac{f(x)-f(0)}{x}-f^{\prime}(0)\right| \leq C x .
$$

This amounts to

$$
\left|\frac{1}{2 \pi i a+1} \frac{(1+1 / n)^{2 \pi i a+1}-1}{1 / n}-1\right| \leq \frac{C}{n} .
$$

We now use this together with the fact that $\left|n^{2 \pi i a}\right|=1$ when $a \in \mathbb{R}$ to estimate that

$$
\left|\frac{1}{2 \pi i a+1}\left(\frac{(1+1 / n)^{2 \pi i a+1}-1}{1 / n}-1\right) n^{2 \pi i a}\right| \leq \frac{C}{n}
$$

for all positive integers n. Note that while we only proved this for large enough n, we can choose C big enough so that it holds for smaller values as well. We then get that

$$
\frac{1}{N} \sum_{n=1}^{N}\left|\frac{1}{2 \pi i a+1}\left(\frac{(1+1 / n)^{2 \pi i a+1}-1}{1 / n}-1\right) n^{2 \pi i a}\right| \leq \frac{1}{N} \sum_{n=1}^{N} \frac{C}{n} \leq \frac{C_{2} \log N}{N}
$$

The right hand side converges to zero as $N \rightarrow \infty$. Hence the sum

$$
\frac{1}{N} \sum_{n=1}^{N} \frac{1}{2 \pi i a+1}\left(\frac{(1+1 / n)^{2 \pi i a+1}-1}{1 / n}-1\right) n^{2 \pi i a}
$$

also converges to zero as $N \rightarrow \infty$.
Exercise 5. Prove Corollary 4.8; that is, show that if a 2π-periodic function $f(x)$ is piecewise C^{1}, then its Fourier series converges at every point, and

$$
\lim _{N \rightarrow \infty} S_{N} f(x)=\lim _{t \rightarrow 0} \frac{f(x+t)+f(x-t)}{2}, \quad x \in[-\pi, \pi]
$$

Solution 5. Let f be piecewise C^{1}, so there exists a partition $-\pi=a_{0}<a_{1}<\ldots<a_{n}=\pi$ such that the restrictions $f \mid\left(a_{i}, a_{i+1}\right)$ are C^{1} and one-sided limits Using Exercise 2 we only need to show the convergence at First of all, we lose no generality if we only show the convergence at the point $x_{0}=0$, since we can always make a substitution $F(x)=f\left(x+x_{0}\right)$ as in the proof of the Dini condition. We hence want to show

$$
\begin{equation*}
\lim _{N \rightarrow \infty} S_{N} f(0)=\frac{f(0+)+f(0-)}{2} \tag{1}
\end{equation*}
$$

where $f(0+)$ and $f(0-)$ denote the left and right limits of the function f at the point $x=0$. For a piecewise C^{1}-function f these limits always exist but may disagree. We now apply Lemma 4.2 of the lecture notes. By the lemma, to show that (1) holds it is enough to check that

$$
\int_{0}^{\pi}\left|\frac{f(x)+f(-x)}{2}-\frac{f(0+)+f(0-)}{2}\right| \frac{d x}{x}<\infty
$$

It will be enough to show that the functions

$$
g_{+}(x)=\frac{f(x)-f(0+)}{x} \quad \text { and } \quad g_{-}(x)=\frac{f(-x)-f(0-)}{x}
$$

are bounded on the interval $(0, \pi)$, since

$$
\int_{0}^{\pi}\left|\frac{f(x)+f(-x)}{2}-\frac{f(0+)+f(0-)}{2}\right| \frac{d x}{x}=\frac{1}{2} \int_{0}^{\pi}\left|\frac{f(x)-f(0+)}{x}+\frac{f(0+)+f(0-)}{2}\right| d x
$$

Let us take $\epsilon>0$ sufficiently small so that f is C^{1} on the interval $(0, \epsilon]$. Then for $\epsilon \leq x \leq \pi$ we have that

$$
\left|g_{+}(x)\right| \leq \frac{|f(x)-f(0+)|}{\epsilon}
$$

which is bounded since f is bounded. When $0<x<\epsilon$, we use the mean value theorem to find, for each x, a point $\xi_{x} \in(0, x)$ such that

$$
g_{+}(x)=\frac{f(x)-f(0+)}{x}=f^{\prime}\left(\xi_{x}\right)
$$

Since f is piecewise C^{1}, by definition the derivative $f^{\prime}(x)$ is continuous on the closed interval $[0, \epsilon]$ and hence bounded. This shows that $g_{+}(x)$ is bounded, and by the same arguments so is $g_{-}(x)$. Hence the result is proven.

Exercise 6. Let $f \in C_{\#}(-\pi, \pi)$. Assume that f has another period $\beta>0: \quad f(\beta+x)=f(x)$ for all x. Show that if f is constant if $\beta / 2 \pi$ is irrational.

Solution 6. Define a new function g by setting $g(x)=f(x+\beta)$. By Exercise 4 from Set 1 , we know that $\widehat{g}(n)=e^{i n \beta} \widehat{f}(n)$. But as $g(x)=f(x+\beta)=f(x)$ for all x, then we also have $\widehat{g}(n)=\widehat{f}(n)$.
As $\beta / 2 \pi$ is irrational, we know that for any integers n and m we have $n \beta \neq 2 m \pi$ unless $n=m=0$. This means that $e^{i n \beta} \neq 1$ for any $n \neq 0$ and we can solve

$$
\left(1-e^{i n \beta}\right) \widehat{f}(n)=0 \text { so } \widehat{f}(n)=0
$$

As the function $h(x)=\widehat{f}(0)$ has the same Fourier coefficients as f, we know that $f(x)=$ $\widehat{f}(0)$ almost everywhere. As f was continuous, we have shown that f is constant.
Extra: If we only assume $f \in L^{1}(-\pi, \pi)$, then the previous computation still shows that $f(x)=\widehat{f}(0)$ almost everywhere. However, if we define set $S=\{2 n \pi+m \beta: n, m \in \mathbb{Z}\}$, then the characteristic function of S is both 2π-periodic and β-periodic, but is not a constant function.

Exercise 7*. Is the sequence $(\sqrt[3]{n})_{n=1}^{\infty}$ equidistributed $\bmod 1$?
Solution 7^{*}. We will show that the sequence is equidistributed $\bmod 1$ directly from the definition. Let $(p, q) \subset[0,1)$. Then $\langle\sqrt[3]{n}\rangle \in(p, q)$ when $\sqrt[3]{n} \in(p+k, q+k)$ for some $k \geq 0$. Equivalently

$$
n \in\left(k^{3}+3 p k^{2}+3 p^{2} k+p^{3}, k^{3}+3 q k^{2}+3 q^{2} k+q^{3}\right) .
$$

We denote

$$
A_{N}=\frac{1}{N}|\{\langle\sqrt[3]{n}\rangle \in(p, q): 1 \leq n \leq N\}|
$$

Now A_{N} increases when N goes through numbers in interval $\left(k^{3}+3 p k^{2}+3 p^{2} k+p^{3}, k^{3}+\right.$ $3 q k^{2}+3 q^{2} k+q^{3}$) for some k and decreases elsewhere. This means that A_{N} has a local maximum when $N=\left\lceil k^{3}+3 q k^{2}+3 q^{2} k+q^{3}\right\rceil-1$, just before it starts decreasing. When $N=\left\lceil k^{3}+3 q k^{2}+3 q^{2} k+q^{3}\right\rceil-1$ we have

$$
\begin{aligned}
A_{N} & \leq \frac{\sum_{l=0}^{k}\left(l^{3}+3 q l^{2}+3 q^{2} l+q^{3}-\left(l^{3}+3 p l^{2}+3 p^{2} l+p^{3}\right)+1\right)}{N} \\
& =\frac{(q-p) k(k+1)(2 k+1) / 2+\left(q^{2}-p^{2}\right) 3 k(k+1) / 2+(k+1)\left(q^{3}-p^{3}+1\right)}{N} \\
& \leq \frac{(q-p) k(k+1)\left(k+\frac{1}{2}\right)+\left(q^{2}-p^{2}\right) 3 k(k+1) / 2+(k+1)\left(q^{3}-p^{3}+1\right)}{k^{3}+3 q k^{2}+3 q^{2} k+q^{3}-2}
\end{aligned}
$$

As this expression is a rational function with both denominator and numerator having
degree 3, we see that

$$
\begin{aligned}
A_{N} & \leq \frac{(q-p) k(k+1)\left(k+\frac{1}{2}\right)+\left(q^{2}-p^{2}\right) 3 k(k+1) / 2+(k+1)\left(q^{3}-p^{3}+1\right)}{k^{3}+3 q k^{2}+3 q^{2} k+q^{3}-2} \\
& =\frac{(q-p)\left(1+k^{-1}\right)\left(1+\frac{1}{2} k^{-1}\right)+\left(q^{2}-p^{2}\right) 3 k^{-1}\left(1+k^{-1}\right) / 2+\left(k^{-2}+k^{-3}\right)\left(q^{3}-p^{3}+1\right)}{1+3 q k^{-1}+3 q^{2} k^{-2}+q^{3} k^{-3}-2 k^{-3}} \\
& \rightarrow q-p
\end{aligned}
$$

This means that $\limsup _{N \rightarrow \infty} A_{N} \leq q-p$. Similarly A_{N} has a local minimum whenever $N=\left\lfloor k^{3}+3 p k^{2}+3 p^{2} k+p^{3}\right\rfloor$. Then

$$
\begin{aligned}
A_{N} & \geq \frac{\sum_{l=0}^{k-1}\left(l^{3}+3 q l^{2}+3 q^{2} l+q^{3}-\left(l^{3}+3 p l^{2}+3 p^{2} l+p^{3}\right)-1\right)}{N} \\
& =\frac{(q-p) k(k-1)(2 k-1) / 2+\left(q^{2}-p^{2}\right) 3 k(k-1) / 2+k\left(q^{3}-p^{3}-1\right)}{N} \\
& \geq \frac{(q-p) k(k-1)\left(k-\frac{1}{2}\right)+\left(q^{2}-p^{2}\right) 3 k(k-1) / 2+k\left(q^{3}-p^{3}-1\right)}{k^{3}+3 p k^{2}+3 p^{2} k+p^{3}} \\
& =\frac{(q-p)\left(1-k^{-1}\right)\left(1-\frac{1}{2} k^{-1}\right)+\left(q^{2}-p^{2}\right) 3 k^{-1}\left(1-k^{-1}\right) / 2+k^{-2}\left(q^{3}-p^{3}+1\right)}{1+3 p k^{-1}+3 p^{2} k^{-2}+p^{3} k^{-3}} \\
& \rightarrow q-p
\end{aligned}
$$

This shows that $\liminf _{N \rightarrow \infty} A_{N} \geq q-p$. Combining the results, we see that $\lim _{N \rightarrow \infty} A_{N}=$ $q-p$ and the sequence $(\sqrt[3]{n})_{n=1}^{\infty}$ is equidistributed $\bmod 1$.

