
FOURIER ANALYSIS. (fall 2016)

MODEL SOLUTIONS FOR SET 3

Exercise 1. (i) Let N ∈ N. Show that there exists a non-trivial function f ∈ L1[−π, π] such
that FN ∗ f(x) = 0 for all x.

(ii) Is there a non-trivial function f ∈ L1[−π, π] so that FN ∗ f(x) = 0 for all x and for
all N ≥ 0 ?

Solution 1. (i) We can choose the function f as f(x) = ei(N+1)x. Now we have f̂(n) = 0 for
any n 6= N + 1 and so

FN ∗ f(x) =
N−1∑

n=−(N−1)

(N − |n|
N

)
f̂(n)einx = 0.

(ii) There is no such function. As the Fejer kernels are a good sequence of kernels, we know
that ‖f − FN ∗ f‖L1(−π,π) goes to zero as N goes to infinity. Assuming that FN ∗ f(x) = 0
for all x and for all N gives us

‖f‖L1(−π,π) = ‖f − FN ∗ f‖L1(−π,π) → 0.

This means that ‖f‖L1(−π,π) = 0, so f(x) = 0 for almost every x.

Exercise 2. Use the results of lectures and verify that the Fourier-series of an integrable
function converges at any point of differentiability of f .

Solution 2. Let f ∈ L1(−π, π) be 2π-periodic and differentiable at x0. We apply Dini’s
criterion. We need to show that∫ π

0

∣∣∣∣f(x0 + t) + f(x0 − t)
2

− f(x0)

∣∣∣∣ dtt <∞.

We can write this equivalently as∫ π

0

1

2

∣∣∣∣f(x0 + t)− f(x0)

t
+
f(x0 − t)− f(x0)

t

∣∣∣∣ dt <∞.
As f is differentiable at x0 there exists δ > 0 such that for 0 < t < δ we have

max

{∣∣∣∣f(x0 + t)− f(x0)

t

∣∣∣∣ , ∣∣∣∣f(x0 − t)− f(x0)

t

∣∣∣∣} < |f ′(x0)|+ 1.

We can then estimate ∫ π

0

1

2

∣∣∣∣f(x0 + t)− f(x0)

t
+
f(x0 − t)− f(x0)

t

∣∣∣∣ dt
≤
∫ δ

0

1

2
(2|f ′(x0)|+ 2) dt+

∫ π

δ

1

2δ
(|f(x0 + t)|+ 2|f(x0)|+ |f(x0 − t)|) dt

≤ δ(|f ′(x0)|+ 1) +
2‖f‖L1

δ
<∞.
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Exercise 3. Suppose the sequence (xn)∞n=1 is equidistributed (mod 1) and a ∈ Z \ {0}. Show
that then also the sequence (axn)∞n=1 is equidistributed (mod 1).

Does the result hold when α /∈ Q ?

Solution 3. We use Weyl’s criterion. Suppose (xn) is equidistributed mod 1. Then by the
criterion the equality

lim
n→∞

1

n

n−1∑
k=0

e2πilxk = 0

holds for every l ∈ Z \ {0}. If it holds for all such l, it also holds for l = al′, where l′ runs
over the nonzero integers. Thus it holds also that

lim
n→∞

1

n

n−1∑
k=0

e2πial
′xk = 0 for all l′ ∈ Z \ {0}

which shows that (axn) is equidistributed by Weyl’s criterion.

If a is allowed to be an irrational number, the result doesn’t hold. For example, the
sequence (n

√
2) is equidistributed mod 1 by Corollary 5.4 of the lecture notes, but the

sequence (
√

(2)n/
√

2) = (n) = (0) is not.

Extra: For a ∈ Q \ Z the result is also not true, since if (xn) is a sequence of numbers on
the interval [0, 1] that is equidistributed, then the sequence (xn/2) lies only on the interval
[0, 1/2] and is therefore not equidistributed.

Exercise 4. Show that the sequence (< a log n >)∞n=1 is not equidistributed (mod 1) for any
a ∈ R.

Solution 4. Let a be a real number. If a is zero then obviously (a log n) is not equidistributed,
so assume a 6= 0. We then apply Weyl’s criterion. It needs to be shown that for some
non-zero integer k the sequence of partial sums

1

N

N∑
n=1

e2πiak logn

does not converge to zero as N →∞. We will show this for k = 1. We now simplify that

1

N

N∑
n=1

e2πia logn =
1

N

N∑
n=1

n2πia

The corresponding integral is

1

N

∫ N+1

1

x2πiadx =
1

(2πia+ 1)N

(
(N + 1)2πia+1 − 1

)
.
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This diverges as N → ∞, since the numbers (N + 1)2πia are on the unit circle and go
around it infinitely often as N →∞. We now compare the sum to the integral. If we can
prove that the difference

dN =
1

N

∫ N+1

1

x2πiadx− 1

N

N∑
n=1

n2πia

converges to zero as N →∞, then it will follow that the original sum cannot converge to
zero. We calculate that

dN =
1

N

∫ N+1

1

x2πiadx− 1

N

N∑
n=1

n2πia

=
1

N

N∑
n=1

(∫ n+1

n

x2πiadx− n2πia

)

=
1

N

N∑
n=1

(
(n+ 1)2πia+1 − n2πia+1

2πia+ 1
− n2πia

)

=
1

N

N∑
n=1

1

2πia+ 1

(
(1 + 1/n)2πia+1 − 1

1/n
− 1

)
n2πia

We now estimate the terms of this sum when n is large. If n is large, 1/n is small and we
can use the Taylor series of the function

f(x) =
1

2πia+ 1
(1 + x)2πia+1

at the point x = 0 to find the estimate∣∣∣∣f(x)− f(0)

x
− f ′(0)

∣∣∣∣ ≤ Cx.

This amounts to ∣∣∣∣ 1

2πia+ 1

(1 + 1/n)2πia+1 − 1

1/n
− 1

∣∣∣∣ ≤ C

n
.

We now use this together with the fact that |n2πia| = 1 when a ∈ R to estimate that∣∣∣∣ 1

2πia+ 1

(
(1 + 1/n)2πia+1 − 1

1/n
− 1

)
n2πia

∣∣∣∣ ≤ C

n

for all positive integers n. Note that while we only proved this for large enough n, we can
choose C big enough so that it holds for smaller values as well. We then get that

1

N

N∑
n=1

∣∣∣∣ 1

2πia+ 1

(
(1 + 1/n)2πia+1 − 1

1/n
− 1

)
n2πia

∣∣∣∣ ≤ 1

N

N∑
n=1

C

n
≤ C2 logN

N
.

3



The right hand side converges to zero as N →∞. Hence the sum

1

N

N∑
n=1

1

2πia+ 1

(
(1 + 1/n)2πia+1 − 1

1/n
− 1

)
n2πia

also converges to zero as N →∞.

Exercise 5. Prove Corollary 4.8; that is, show that if a 2π-periodic function f(x) is piecewise
C1, then its Fourier series converges at every point, and

lim
N→∞

SNf(x) = lim
t→0

f(x+ t) + f(x− t)
2

, x ∈ [−π, π].

Solution 5. Let f be piecewise C1, so there exists a partition −π = a0 < a1 < . . . < an = π
such that the restrictions f |(ai, ai+1) are C1 and one-sided limits Using Exercise 2 we
only need to show the convergence at First of all, we lose no generality if we only show the
convergence at the point x0 = 0, since we can always make a substitution F (x) = f(x+x0)
as in the proof of the Dini condition. We hence want to show

lim
N→∞

SNf(0) =
f(0+) + f(0−)

2
, (1)

where f(0+) and f(0−) denote the left and right limits of the function f at the point
x = 0. For a piecewise C1-function f these limits always exist but may disagree. We now
apply Lemma 4.2 of the lecture notes. By the lemma, to show that (1) holds it is enough
to check that ∫ π

0

∣∣∣∣f(x) + f(−x)

2
− f(0+) + f(0−)

2

∣∣∣∣ dxx <∞.

It will be enough to show that the functions

g+(x) =
f(x)− f(0+)

x
and g−(x) =

f(−x)− f(0−)

x

are bounded on the interval (0, π), since∫ π

0

∣∣∣∣f(x) + f(−x)

2
− f(0+) + f(0−)

2

∣∣∣∣ dxx =
1

2

∫ π

0

∣∣∣∣f(x)− f(0+)

x
+
f(0+) + f(0−)

2

∣∣∣∣ dx.
Let us take ε > 0 sufficiently small so that f is C1 on the interval (0, ε]. Then for ε ≤ x ≤ π
we have that

|g+(x)| ≤ |f(x)− f(0+)|
ε

,

which is bounded since f is bounded. When 0 < x < ε, we use the mean value theorem
to find, for each x, a point ξx ∈ (0, x) such that

g+(x) =
f(x)− f(0+)

x
= f ′(ξx)

Since f is piecewise C1, by definition the derivative f ′(x) is continuous on the closed
interval [0, ε] and hence bounded. This shows that g+(x) is bounded, and by the same
arguments so is g−(x). Hence the result is proven.
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Exercise 6. Let f ∈ C#(−π, π). Assume that f has another period β > 0: f(β+x) = f(x)
for all x. Show that if f is constant if β/2π is irrational.

Solution 6. Define a new function g by setting g(x) = f(x + β). By Exercise 4 from Set 1,

we know that ĝ(n) = einβ f̂(n). But as g(x) = f(x+ β) = f(x) for all x, then we also have

ĝ(n) = f̂(n).

As β/2π is irrational, we know that for any integers n and m we have nβ 6= 2mπ unless
n = m = 0. This means that einβ 6= 1 for any n 6= 0 and we can solve

(1− einβ)f̂(n) = 0 so f̂(n) = 0.

As the function h(x) = f̂(0) has the same Fourier coefficients as f , we know that f(x) =

f̂(0) almost everywhere. As f was continuous, we have shown that f is constant.

Extra: If we only assume f ∈ L1(−π, π), then the previous computation still shows that

f(x) = f̂(0) almost everywhere. However, if we define set S = {2nπ+mβ : n,m ∈ Z}, then
the characteristic function of S is both 2π-periodic and β-periodic, but is not a constant
function.

Exercise 7∗. Is the sequence ( 3
√
n)∞n=1 equidistributed mod 1?

Solution 7∗. We will show that the sequence is equidistributed mod 1 directly from the
definition. Let (p, q) ⊂ [0, 1). Then 〈 3

√
n〉 ∈ (p, q) when 3

√
n ∈ (p+k, q+k) for some k ≥ 0.

Equivalently
n ∈ (k3 + 3pk2 + 3p2k + p3, k3 + 3qk2 + 3q2k + q3).

We denote

AN =
1

N
|{〈 3
√
n〉 ∈ (p, q) : 1 ≤ n ≤ N}|.

Now AN increases when N goes through numbers in interval (k3 + 3pk2 + 3p2k + p3, k3 +
3qk2 + 3q2k + q3) for some k and decreases elsewhere. This means that AN has a local
maximum when N = dk3 + 3qk2 + 3q2k + q3e − 1, just before it starts decreasing. When
N = dk3 + 3qk2 + 3q2k + q3e − 1 we have

AN ≤
∑k

l=0(l
3 + 3ql2 + 3q2l + q3 − (l3 + 3pl2 + 3p2l + p3) + 1)

N

=
(q − p)k(k + 1)(2k + 1)/2 + (q2 − p2)3k(k + 1)/2 + (k + 1)(q3 − p3 + 1)

N

≤
(q − p)k(k + 1)(k + 1

2
) + (q2 − p2)3k(k + 1)/2 + (k + 1)(q3 − p3 + 1)

k3 + 3qk2 + 3q2k + q3 − 2

As this expression is a rational function with both denominator and numerator having
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degree 3, we see that

AN ≤
(q − p)k(k + 1)(k + 1

2
) + (q2 − p2)3k(k + 1)/2 + (k + 1)(q3 − p3 + 1)

k3 + 3qk2 + 3q2k + q3 − 2

=
(q − p)(1 + k−1)(1 + 1

2
k−1) + (q2 − p2)3k−1(1 + k−1)/2 + (k−2 + k−3)(q3 − p3 + 1)

1 + 3qk−1 + 3q2k−2 + q3k−3 − 2k−3

→ q − p

This means that lim supN→∞AN ≤ q − p. Similarly AN has a local minimum whenever
N = bk3 + 3pk2 + 3p2k + p3c. Then

AN ≥
∑k−1

l=0 (l3 + 3ql2 + 3q2l + q3 − (l3 + 3pl2 + 3p2l + p3)− 1)

N

=
(q − p)k(k − 1)(2k − 1)/2 + (q2 − p2)3k(k − 1)/2 + k(q3 − p3 − 1)

N

≥
(q − p)k(k − 1)(k − 1

2
) + (q2 − p2)3k(k − 1)/2 + k(q3 − p3 − 1)

k3 + 3pk2 + 3p2k + p3

=
(q − p)(1− k−1)(1− 1

2
k−1) + (q2 − p2)3k−1(1− k−1)/2 + k−2(q3 − p3 + 1)

1 + 3pk−1 + 3p2k−2 + p3k−3

→ q − p

This shows that lim infN→∞AN ≥ q−p. Combining the results, we see that limN→∞AN =
q − p and the sequence ( 3

√
n)∞n=1 is equidistributed mod 1.
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